1,026 research outputs found

    Feasibility of Using Classification Analyses to Determine Tropical Cyclone Rapid Intensification

    Get PDF
    Tropical cyclone intensity techniques developed by Dvorak have thus far been regarded by tropical meteorologists as the best identification and forecast schemes available using satellite imagery. However, in recent years, several ideologies have arisen which discuss alternative means of determining typhoon rapid intensification or weakening in the Pacific. These theories include examining channel outflow patterns, potential vorticity superposition and anomalies, tropical upper tropospheric trough interactions, environmental influences, and upper tropospheric flow transitions. It is now possible to data mine these atmospheric parameters thought partly responsible for typhoon rapid intensification and weakening to validate their usefulness in the forecast process. Using the latest data mining software tools, this study used components of NOGAPS analyses along with selected atmospheric and climatological predictors in classification analyses to create conditional forecast decision trees. The results of the classification model show an approximate R2 of 0.68 with percent error misclassifications of 13.5% for rapidly weakening typhoon events and 21.8% for rapidly intensifying typhoon events. In addition, a merged set of suggested forecast splitting rules was developed. By using the three most accurate predictors from both intensifying and weakening storms, the results validate the notion that multiple parameters are responsible for rapid changes in typhoon development

    A Novel Approach For Identifying Cloud Clusters Developing Into Tropical Cyclones

    Get PDF
    Providing advance notice of rare events, such as a cloud cluster (CC) developing into a tropical cyclone (TC), is of great importance. Having advance warning of such rare events possibly can help avoid or reduce the risk of damages and allow emergency responders and the affected community enough time to respond appropriately. Considering this, forecasters need better data mining and data driven techniques to identify developing CCs. Prior studies have attempted to predict the formation of TCs using numerical weather prediction models as well as satellite and radar data. However, refined observational data and forecasting techniques are not always available or accurate in areas such as the North Atlantic Ocean where data are sparse. Consequently, this research provides the predictive features that contribute to a CC developing into a TC using only global gridded satellite data that are readily available. This was accomplished by identifying and tracking CCs objectively where no expert knowledge is required to investigate the predictive features of developing CCs. We have applied the proposed oversampling technique named the Selective Clustering based Oversampling Technique (SCOT) to reduce the bias of the non-developing CCs when using standard classifiers. Our approach identifies twelve predictive features for developing CCs and demonstrates predictive skill for 0 - 48 hours prior to development. The results confirm that the proposed technique can satisfactorily identify developing CCs for each of the nine forecasts using standard classifiers such as Classification and Regression Trees (CART), neural networks, and support vector machines (SVM) and ten-fold cross validation. These results are based on the geometric mean values and are further verified using seven case studies such as Hurricane Katrina (2005). These results demonstrate that our proposed approach could potentially improve weather prediction and provide advance notice of a developing CC by using solely gridded satellite data

    Development of a geovisual analytics environment using parallel coordinates with applications to tropical cyclone trend analysis

    Get PDF
    A global transformation is being fueled by unprecedented growth in the quality, quantity, and number of different parameters in environmental data through the convergence of several technological advances in data collection and modeling. Although these data hold great potential for helping us understand many complex and, in some cases, life-threatening environmental processes, our ability to generate such data is far outpacing our ability to analyze it. In particular, conventional environmental data analysis tools are inadequate for coping with the size and complexity of these data. As a result, users are forced to reduce the problem in order to adapt to the capabilities of the tools. To overcome these limitations, we must complement the power of computational methods with human knowledge, flexible thinking, imagination, and our capacity for insight by developing visual analysis tools that distill information into the actionable criteria needed for enhanced decision support. In light of said challenges, we have integrated automated statistical analysis capabilities with a highly interactive, multivariate visualization interface to produce a promising approach for visual environmental data analysis. By combining advanced interaction techniques such as dynamic axis scaling, conjunctive parallel coordinates, statistical indicators, and aerial perspective shading, we provide an enhanced variant of the classical parallel coordinates plot. Furthermore, the system facilitates statistical processes such as stepwise linear regression and correlation analysis to assist in the identification and quantification of the most significant predictors for a particular dependent variable. These capabilities are combined into a unique geovisual analytics system that is demonstrated via a pedagogical case study and three North Atlantic tropical cyclone climate studies using a systematic workflow. In addition to revealing several significant associations between environmental observations and tropical cyclone activity, this research corroborates the notion that enhanced parallel coordinates coupled with statistical analysis can be used for more effective knowledge discovery and confirmation in complex, real-world data sets

    Development of a geovisual analytics environment using parallel coordinates with applications to tropical cyclone trend analysis

    Get PDF
    A global transformation is being fueled by unprecedented growth in the quality, quantity, and number of different parameters in environmental data through the convergence of several technological advances in data collection and modeling. Although these data hold great potential for helping us understand many complex and, in some cases, life-threatening environmental processes, our ability to generate such data is far outpacing our ability to analyze it. In particular, conventional environmental data analysis tools are inadequate for coping with the size and complexity of these data. As a result, users are forced to reduce the problem in order to adapt to the capabilities of the tools. To overcome these limitations, we must complement the power of computational methods with human knowledge, flexible thinking, imagination, and our capacity for insight by developing visual analysis tools that distill information into the actionable criteria needed for enhanced decision support. In light of said challenges, we have integrated automated statistical analysis capabilities with a highly interactive, multivariate visualization interface to produce a promising approach for visual environmental data analysis. By combining advanced interaction techniques such as dynamic axis scaling, conjunctive parallel coordinates, statistical indicators, and aerial perspective shading, we provide an enhanced variant of the classical parallel coordinates plot. Furthermore, the system facilitates statistical processes such as stepwise linear regression and correlation analysis to assist in the identification and quantification of the most significant predictors for a particular dependent variable. These capabilities are combined into a unique geovisual analytics system that is demonstrated via a pedagogical case study and three North Atlantic tropical cyclone climate studies using a systematic workflow. In addition to revealing several significant associations between environmental observations and tropical cyclone activity, this research corroborates the notion that enhanced parallel coordinates coupled with statistical analysis can be used for more effective knowledge discovery and confirmation in complex, real-world data sets

    Evidence of Climate Variability and Tropical Cyclone Activity from Diatom Assemblage Dynamics in Coastal Southwest Florida

    Get PDF
    Estuaries are dynamic on many spatial and temporal scales. Distinguishing effects of unpredictable events from cyclical patterns can be challenging but important to predict the influence of press and pulse drivers in the face of climate change. Diatom assemblages respond rapidly to changing environmental conditions and characterize change on multiple time scales. The goals of this research were to 1) characterize diatom assemblages in the Charlotte Harbor watershed, their relationships with water quality parameters, and how they change in response to climate; and 2) use assemblages in sediment cores to interpret past climate changes and tropical cyclone activity. Diatom assemblages had strong relationships with salinity and nutrient concentrations, and a quantitative tool was developed to reconstruct past values of these parameters. Assemblages were stable between the wet and dry seasons, and were more similar to each other than to assemblages found following a tropical cyclone. Diatom assemblages following the storm showed a decrease in dispersion among sites, a pattern that was consistent on different spatial scales but may depend on hydrological management regimes. Analysis of sediment cores from two southwest Florida estuaries showed that locally-developed diatom inference models can be applied with caution on regional scales. Large-scale climate changes were suggested by environmental reconstructions in both estuaries, but with slightly different temporal pacing. Estimates of salinity and nutrient concentrations suggested that major hydrological patterns changed at approximately 5.5 and 3 kyrs BP. A highly temporally-resolved sediment core from Charlotte Harbor provided evidence for past changes that correspond with known climate records. Diatom assemblages had significant relationships with the three-year average index values of the Atlantic Multidecadal Oscillation and the El Niño Southern Oscillation. Assemblages that predicted low salinity and high total phosphorus also had the lowest dispersion and corresponded with some major storms in the known record, which together may provide a proxy for evidence of severe storms in the paleoecological record

    Modern Climatology - Full Text

    Get PDF
    Climatology, the study of climate, is no longer regarded as a single discipline that treats climate as something that fluctuates only within the unchanging boundaries described by historical statistics. The field has recognized that climate is something that changes continually under the influence of physical and biological forces and so, cannot be understood in isolation but rather, is one that includes diverse scientific disciplines that play their role in understanding a highly complex coupled “whole system” that is the Earth’s climate. The modern era of climatology is echoed in this book. On the one hand it offers a broad synoptic perspective but also considers the regional standpoint as it is this that affects what people need from climatology, albeit water resource managers or engineers etc. Aspects on the topic of climate change – what is often considered a contradiction in terms – is also addressed. It is all too evident these days that what recent work in climatology has revealed carries profound implications for economic and social policy; it is with these in mind that the final chapters consider acumens as to the application of what has been learned to date. This book is divided into four sections that cover sub-disciplines in climatology. The first section contains four chapters that pertain to synoptic climatology, i.e., the study of weather disturbances including hurricanes, monsoon depressions, synoptic waves, and severe thunderstorms; these weather systems directly impact humanity. The second section on regional climatology has four chapters that describe the climate features within physiographically defined areas. The third section is on climate change which involves both past (paleoclimate) and future climate: The first two chapters cover certain facets of paleoclimate while the third is centered towards the signals (observed or otherwise) of climate change. The fourth and final section broaches the sub-discipline that is often referred to as applied climatology; this represents the important goal of all studies in climatology–one that affects modes of living. Here, three chapters are devoted towards the application of climatological research that might have useful application for operational purposes in industrial, manufacturing, agricultural, technological and environmental affairs. Please click here to explore the components of this work.https://digitalcommons.usu.edu/modern_climatology/1014/thumbnail.jp

    Geodatabase-assisted storm surge modeling

    Get PDF
    Tropical cyclone-generated storm surge frequently causes catastrophic damage in communities along the Gulf of Mexico. The prediction of landfalling or hypothetical storm surge magnitudes in U.S. Gulf Coast regions remains problematic, in part, because of the dearth of historic event parameter data, including accurate records of storm surge magnitude (elevation) at locations along the coast from hurricanes. While detailed historical records exist that describe hurricane tracks, these data have rarely been correlated with the resulting storm surge, limiting our ability to make statistical inferences, which are needed to fully understand the vulnerability of the U.S. Gulf Coast to hurricane-induced storm surge hazards. This dissertation addresses the need for reliable statistical storm surge estimation by proposing a probabilistic geodatabase-assisted methodology to generate a storm surge surface based on hurricane location and intensity parameters on a single desktop computer. The proposed methodology draws from a statistically representative synthetic tropical cyclone dataset to estimate hurricane track patterns and storm surge elevations. The proposed methodology integrates four modules: tropical cyclone genesis, track propagation, storm surge estimation, and a geodatabase. Implementation of the developed methodology will provide a means to study and improve long-term tropical cyclone activity patterns and predictions. Specific contributions are made to the current state of the art through each of the four modules. In the genesis module, improved representative data from historical genesis populations are achieved through implementation of a stratified-Monte-Carlo sampling method to simulate genesis locations for the North Atlantic Basin, avoiding potential non-representative clustering of sampled genesis locations. In the track module, the improved synthetic genesis locations are used as the starting point for a track location and intensity methodology that incorporates storm strength parameters into the synthetic tracks and improves the positional quality of synthetic tracks. In the surge module, high-resolution, computationally intensive storm surge model results are probabilistically integrated in a computationally fast-running platform. In the geodatabase module, historic and synthetic tropical cyclone genesis, track, and surge elevation data are combined for efficient storage and retrieval of storm surge data

    Hydrometeorological Extremes and Its Local Impacts on Human-Environmental Systems

    Get PDF
    This Special Issue of Atmosphere focuses on hydrometeorological extremes and their local impacts on human–environment systems. Particularly, we accepted submissions on the topics of observational and model-based studies that could provide useful information for infrastructure design, decision making, and policy making to achieve our goals of enhancing the resilience of human–environment systems to climate change and increased variability
    • …
    corecore