671 research outputs found

    Max-FISM: Mining (recently) maximal frequent itemsets over data streams using the sliding window model

    Get PDF
    AbstractFrequent itemset mining from data streams is an important data mining problem with broad applications such as retail market data analysis, network monitoring, web usage mining, and stock market prediction. However, it is also a difficult problem due to the unbounded, high-speed and continuous characteristics of streaming data. Therefore, extracting frequent itemsets from more recent data can enhance the analysis of stream data. In this paper, we propose an efficient algorithm, called Max-FISM (Maximal-Frequent Itemsets Mining), for mining recent maximal frequent itemsets from a high-speed stream of transactions within a sliding window. According to our algorithm, whenever a new transaction is inserted in the current window only its maximum itemset should be inserted into a prefix tree-based summary data structure called Max-Set for maintaining the number of independent appearance of each transaction in the current window. Finally, the set of recent maximal frequent itemsets is obtained from the current Max-Set. Experimental studies show that the proposed Max-FISM algorithm is highly efficient in terms of memory and time complexity for mining recent maximal frequent itemsets over high-speed data streams

    An efficient closed frequent itemset miner for the MOA stream mining system

    Get PDF
    Mining itemsets is a central task in data mining, both in the batch and the streaming paradigms. While robust, efficient, and well-tested implementations exist for batch mining, hardly any publicly available equivalent exists for the streaming scenario. The lack of an efficient, usable tool for the task hinders its use by practitioners and makes it difficult to assess new research in the area. To alleviate this situation, we review the algorithms described in the literature, and implement and evaluate the IncMine algorithm by Cheng, Ke, and Ng (2008) for mining frequent closed itemsets from data streams. Our implementation works on top of the MOA (Massive Online Analysis) stream mining framework to ease its use and integration with other stream mining tasks. We provide a PAC-style rigorous analysis of the quality of the output of IncMine as a function of its parameters; this type of analysis is rare in pattern mining algorithms. As a by-product, the analysis shows how one of the user-provided parameters in the original description can be removed entirely while retaining the performance guarantees. Finally, we experimentally confirm both on synthetic and real data the excellent performance of the algorithm, as reported in the original paper, and its ability to handle concept drift.Postprint (published version

    A Deviant Load Shedding System for Data Stream Mining

    Get PDF
    AbstractLoad shedding is imperative for data stream processing systems in numerous functions as data streams are susceptible to sudden spikes in volume. The proposed system is an attempt to seek and resolve four major problems associated with data stream, which include load shedding and anti-shedding time, number of transactions pruned and selecting predicate; using efficient mining system. The frequent pattern discovered in data stream used in the model exploits the synergy between scheduling and load shedding. This paper also proposes various load shedding strategies which reduce and lighten the workload of the system ensuring an acceptable level of mining accuracy using various parameters like transaction, priority and attributes of data mining. A majority chunk of workload in mining algorithm lies in the innumerable item sets, which are counted and enumerated. The approach is based on the frequent pattern matching principle of stream mining which involves reducing the workload to maintain smaller item sets

    CICLAD: A Fast and Memory-efficient Closed Itemset Miner for Streams

    Full text link
    Mining association rules from data streams is a challenging task due to the (typically) limited resources available vs. the large size of the result. Frequent closed itemsets (FCI) enable an efficient first step, yet current FCI stream miners are not optimal on resource consumption, e.g. they store a large number of extra itemsets at an additional cost. In a search for a better storage-efficiency trade-off, we designed Ciclad,an intersection-based sliding-window FCI miner. Leveraging in-depth insights into FCI evolution, it combines minimal storage with quick access. Experimental results indicate Ciclad's memory imprint is much lower and its performances globally better than competitor methods.Comment: KDD2

    A new data stream mining algorithm for interestingness-rich association rules

    Get PDF
    Frequent itemset mining and association rule generation is a challenging task in data stream. Even though, various algorithms have been proposed to solve the issue, it has been found out that only frequency does not decides the significance interestingness of the mined itemset and hence the association rules. This accelerates the algorithms to mine the association rules based on utility i.e. proficiency of the mined rules. However, fewer algorithms exist in the literature to deal with the utility as most of them deals with reducing the complexity in frequent itemset/association rules mining algorithm. Also, those few algorithms consider only the overall utility of the association rules and not the consistency of the rules throughout a defined number of periods. To solve this issue, in this paper, an enhanced association rule mining algorithm is proposed. The algorithm introduces new weightage validation in the conventional association rule mining algorithms to validate the utility and its consistency in the mined association rules. The utility is validated by the integrated calculation of the cost/price efficiency of the itemsets and its frequency. The consistency validation is performed at every defined number of windows using the probability distribution function, assuming that the weights are normally distributed. Hence, validated and the obtained rules are frequent and utility efficient and their interestingness are distributed throughout the entire time period. The algorithm is implemented and the resultant rules are compared against the rules that can be obtained from conventional mining algorithms

    Pattern mining under different conditions

    Get PDF
    New requirements and demands on pattern mining arise in modern applications, which cannot be fulfilled using conventional methods. For example, in scientific research, scientists are more interested in unknown knowledge, which usually hides in significant but not frequent patterns. However, existing itemset mining algorithms are designed for very frequent patterns. Furthermore, scientists need to repeat an experiment many times to ensure reproducibility. A series of datasets are generated at once, waiting for clustering, which can contain an unknown number of clusters with various densities and shapes. Using existing clustering algorithms is time-consuming because parameter tuning is necessary for each dataset. Many scientific datasets are extremely noisy. They contain considerably more noises than in-cluster data points. Most existing clustering algorithms can only handle noises up to a moderate level. Temporal pattern mining is also important in scientific research. Existing temporal pattern mining algorithms only consider pointbased events. However, most activities in the real-world are interval-based with a starting and an ending timestamp. This thesis developed novel pattern mining algorithms for various data mining tasks under different conditions. The first part of this thesis investigates the problem of mining less frequent itemsets in transactional datasets. In contrast to existing frequent itemset mining algorithms, this part focus on itemsets that occurred not that frequent. Algorithms NIIMiner, RaCloMiner, and LSCMiner are proposed to identify such kind of itemsets efficiently. NIIMiner utilizes the negative itemset tree to extract all patterns that occurred less than a given support threshold in a top-down depth-first manner. RaCloMiner combines existing bottom-up frequent itemset mining algorithms with a top-down itemset mining algorithm to achieve a better performance in mining less frequent patterns. LSCMiner investigates the problem of mining less frequent closed patterns. The second part of this thesis studied the problem of interval-based temporal pattern mining in the stream environment. Interval-based temporal patterns are sequential patterns in which each event is aligned with a starting and ending temporal information. The ability to handle interval-based events and stream data is lacking in existing approaches. A novel intervalbased temporal pattern mining algorithm for stream data is described in this part. The last part of this thesis studies new problems in clustering on numeric datasets. The first problem tackled in this part is shape alternation adaptivity in clustering. In applications such as scientific data analysis, scientists need to deal with a series of datasets generated from one experiment. Cluster sizes and shapes are different in those datasets. A kNN density-based clustering algorithm, kadaClus, is proposed to provide the shape alternation adaptability so that users do not need to tune parameters for each dataset. The second problem studied in this part is clustering in an extremely noisy dataset. Many real-world datasets contain considerably more noises than in-cluster data points. A novel clustering algorithm, kenClus, is proposed to identify clusters in arbitrary shapes from extremely noisy datasets. Both clustering algorithms are kNN-based, which only require one parameter k. In each part, the efficiency and effectiveness of the presented techniques are thoroughly analyzed. Intensive experiments on synthetic and real-world datasets are conducted to show the benefits of the proposed algorithms over conventional approaches

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed
    • …
    corecore