287 research outputs found

    Mining Frequent Itemsets over Recent Data Stream Based on Genetic Algorithm

    Get PDF

    Extraction of High Utility Itemsets using Utility Pattern with Genetic Algorithm from OLTP System

    Get PDF
    To analyse vast amount of data, Frequent pattern mining play an important role in data mining. In practice, Frequent pattern mining cannot meet the challenges of real world problems due to items differ in various measures. Hence an emerging technique called Utility-based data mining is used in data mining processes.The utility mining not only considers the frequency but also see the utility associated with the itemsets.The main objective of utility mining is to extract the itemsets with high utilities, by considering user preferences such as profit,quantity and cost from OLTP systems. In our proposed approach, we are using UP growth with Genetic Algorithm. The idea is that UP growth algorithm would generate Potentially High Utility Itemsets and Genetic Algorithm would optimize and provide the High Utility Item set from it. On comparing with existing algorithm, the proposed approach is performing better in terms of memory utilization. DOI: 10.17762/ijritcc2321-8169.15039

    A genetic algorithm coupled with tree-based pruning for mining closed association rules

    Get PDF
    Due to the voluminous amount of itemsets that are generated, the association rules extracted from these itemsets contain redundancy, and designing an effective approach to address this issue is of paramount importance. Although multiple algorithms were proposed in recent years for mining closed association rules most of them underperform in terms of run time or memory. Another issue that remains challenging is the nature of the dataset. While some of the existing algorithms perform well on dense datasets others perform well on sparse datasets. This paper aims to handle these drawbacks by using a genetic algorithm for mining closed association rules. Recent studies have shown that genetic algorithms perform better than conventional algorithms due to their bitwise operations of crossover and mutation. Bitwise operations are predominantly faster than conventional approaches and bits consume lesser memory thereby improving the overall performance of the algorithm. To address the redundancy in the mined association rules a tree-based pruning algorithm has been designed here. This works on the principle of minimal antecedent and maximal consequent. Experiments have shown that the proposed approach works well on both dense and sparse datasets while surpassing existing techniques with regard to run time and memory

    Mining High Utility Itemsets with Regular Occurrence

    Get PDF
    High utility itemset mining (HUIM) plays an important role in the data mining community and in a wide range of applications. For example, in retail business it is used for finding sets of sold products that give high profit, low cost, etc. These itemsets can help improve marketing strategies, make promotions/ advertisements, etc. However, since HUIM only considers utility values of items/itemsets, it may not be sufficient to observe product-buying behavior of customers such as information related to "regular purchases of sets of products having a high profit margin". To address this issue, the occurrence behavior of itemsets (in the term of regularity) simultaneously with their utility values was investigated. Then, the problem of mining high utility itemsets with regular occurrence (MHUIR) to find sets of co-occurrence items with high utility values and regular occurrence in a database was considered. An efficient single-pass algorithm, called MHUIRA, was introduced. A new modified utility-list structure, called NUL, was designed to efficiently maintain utility values and occurrence information and to increase the efficiency of computing the utility of itemsets. Experimental studies on real and synthetic datasets and complexity analyses are provided to show the efficiency of MHUIRA combined with NUL in terms of time and space usage for mining interesting itemsets based on regularity and utility constraints

    An Algorithm for Generating Non-Redundant Sequential Rules for Medical Time Series Data

    Get PDF
    In this paper, an algorithm for generating non-redundant sequential rules for the medical time series data is designed. This study is the continuation of my previous study titled �An Algorithm for Mining Closed Weighted Sequential Patterns with Flexing Time Interval for Medical Time Series Data� [25]. In my previous work, the sequence weight for each sequence was calculated based on the time interval between the itemsets.Subsequently, the candidate sequences were generated with flexible time intervals initially. The next step was, computation of frequent sequential patterns with the aid of proposed support measure. Next the frequent sequential patterns were subjected to closure checking process which leads to filter the closed sequential patterns with flexible time intervals. Finally, the methodology produced with necessary sequential patterns was proved. This methodology constructed closed sequential patterns which was 23.2% lesser than the sequential patterns. In this study, the sequential rules are generated based on the calculation of confidence value of the rule from the closed sequential pattern. Once the closed sequential rules are generated which are subjected to non-redundant checking process, that leads to produce the final set of non-redundant weighted closed sequential rules with flexible time intervals. This study produces non-redundant sequential rules which is 172.37% lesser than sequential rules

    A multithreaded hybrid framework for mining frequent itemsets

    Get PDF
    Mining frequent itemsets is an area of data mining that has beguiled several researchers in recent years. Varied data structures such as Nodesets, DiffNodesets, NegNodesets, N-lists, and Diffsets are among a few that were employed to extract frequent items. However, most of these approaches fell short either in respect of run time or memory. Hybrid frameworks were formulated to repress these issues that encompass the deployment of two or more data structures to facilitate effective mining of frequent itemsets. Such an approach aims to exploit the advantages of either of the data structures while mitigating the problems of relying on either of them alone. However, limited efforts have been made to reinforce the efficiency of such frameworks. To address these issues this paper proposes a novel multithreaded hybrid framework comprising of NegNodesets and N-list structure that uses the multicore feature of today’s processors. While NegNodesets offer a concise representation of itemsets, N-lists rely on List intersection thereby speeding up the mining process. To optimize the extraction of frequent items a hash-based algorithm has been designed here to extract the resultant set of frequent items which further enhances the novelty of the framework

    A survey on utilization of data mining approaches for dermatological (skin) diseases prediction

    Get PDF
    Due to recent technology advances, large volumes of medical data is obtained. These data contain valuable information. Therefore data mining techniques can be used to extract useful patterns. This paper is intended to introduce data mining and its various techniques and a survey of the available literature on medical data mining. We emphasize mainly on the application of data mining on skin diseases. A categorization has been provided based on the different data mining techniques. The utility of the various data mining methodologies is highlighted. Generally association mining is suitable for extracting rules. It has been used especially in cancer diagnosis. Classification is a robust method in medical mining. In this paper, we have summarized the different uses of classification in dermatology. It is one of the most important methods for diagnosis of erythemato-squamous diseases. There are different methods like Neural Networks, Genetic Algorithms and fuzzy classifiaction in this topic. Clustering is a useful method in medical images mining. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. Clustering has some applications in dermatology. Besides introducing different mining methods, we have investigated some challenges which exist in mining skin data
    • …
    corecore