631 research outputs found

    Max-FISM: Mining (recently) maximal frequent itemsets over data streams using the sliding window model

    Get PDF
    AbstractFrequent itemset mining from data streams is an important data mining problem with broad applications such as retail market data analysis, network monitoring, web usage mining, and stock market prediction. However, it is also a difficult problem due to the unbounded, high-speed and continuous characteristics of streaming data. Therefore, extracting frequent itemsets from more recent data can enhance the analysis of stream data. In this paper, we propose an efficient algorithm, called Max-FISM (Maximal-Frequent Itemsets Mining), for mining recent maximal frequent itemsets from a high-speed stream of transactions within a sliding window. According to our algorithm, whenever a new transaction is inserted in the current window only its maximum itemset should be inserted into a prefix tree-based summary data structure called Max-Set for maintaining the number of independent appearance of each transaction in the current window. Finally, the set of recent maximal frequent itemsets is obtained from the current Max-Set. Experimental studies show that the proposed Max-FISM algorithm is highly efficient in terms of memory and time complexity for mining recent maximal frequent itemsets over high-speed data streams

    Mining frequent itemsets in a stream, in:

    Get PDF
    Abstract Mining frequent itemsets in a datastream proves to be a difficult problem, as itemsets arrive in rapid succession and storing parts of the stream is typically impossible. Nonetheless, it has many useful applications; e.g. opinion and sentiment analysis from social networks. Current stream mining algorithms are based on approximations. In earlier work, mining frequent items in a stream under the max-frequency measure proved to be effective for items. In this article, we extended our work from items to itemsets. Firstly, an optimized incremental algorithm for mining frequent itemsets in a stream is presented. The algorithm maintains a very compact summary of the stream for selected itemsets. Secondly, we show that further compacting the summary is non-trivial. Thirdly, we establish a connection between the size of a summary and results from number theory. Fourthly, we report results of extensive experimentation, both of synthetic and real-world datasets, showing the efficiency of the algorithm both in terms of time and space

    An efficient closed frequent itemset miner for the MOA stream mining system

    Get PDF
    Mining itemsets is a central task in data mining, both in the batch and the streaming paradigms. While robust, efficient, and well-tested implementations exist for batch mining, hardly any publicly available equivalent exists for the streaming scenario. The lack of an efficient, usable tool for the task hinders its use by practitioners and makes it difficult to assess new research in the area. To alleviate this situation, we review the algorithms described in the literature, and implement and evaluate the IncMine algorithm by Cheng, Ke, and Ng (2008) for mining frequent closed itemsets from data streams. Our implementation works on top of the MOA (Massive Online Analysis) stream mining framework to ease its use and integration with other stream mining tasks. We provide a PAC-style rigorous analysis of the quality of the output of IncMine as a function of its parameters; this type of analysis is rare in pattern mining algorithms. As a by-product, the analysis shows how one of the user-provided parameters in the original description can be removed entirely while retaining the performance guarantees. Finally, we experimentally confirm both on synthetic and real data the excellent performance of the algorithm, as reported in the original paper, and its ability to handle concept drift.Postprint (published version
    • …
    corecore