3,169 research outputs found

    HybridMiner: Mining Maximal Frequent Itemsets Using Hybrid Database Representation Approach

    Full text link
    In this paper we present a novel hybrid (arraybased layout and vertical bitmap layout) database representation approach for mining complete Maximal Frequent Itemset (MFI) on sparse and large datasets. Our work is novel in terms of scalability, item search order and two horizontal and vertical projection techniques. We also present a maximal algorithm using this hybrid database representation approach. Different experimental results on real and sparse benchmark datasets show that our approach is better than previous state of art maximal algorithms.Comment: 8 Pages In the proceedings of 9th IEEE-INMIC 2005, Karachi, Pakistan, 200

    A Tight Upper Bound on the Number of Candidate Patterns

    Full text link
    In the context of mining for frequent patterns using the standard levelwise algorithm, the following question arises: given the current level and the current set of frequent patterns, what is the maximal number of candidate patterns that can be generated on the next level? We answer this question by providing a tight upper bound, derived from a combinatorial result from the sixties by Kruskal and Katona. Our result is useful to reduce the number of database scans

    Frequent Pattern mining with closeness Considerations: Current State of the art

    Get PDF
    Due to rising importance in frequent pattern mining in the field of data mining research, tremendous progress has been observed in fields ranging from frequent itemset mining in transaction databases to numerous research frontiers. An elaborative note on current condition in frequent pattern mining and potential research directions is discussed in this article. It2019;s a strong belief that with considerably increasing research in frequent pattern mining in data analysis, it will provide a strong foundation for data mining methodologies and its applications which might prove a milestone in data mining applications in mere future

    Mining optimal item packages using mixed integer programming

    Get PDF
    Traditional methods for discovering frequent patterns from large databases are based on attributing equal weights to all items of the database. In the real world, managerial decisions are based on economic values attached to the item sets. In this paper, we introduce the concept of the value based frequent item packages problems. Furthermore, we provide a mixed integer linear programming (MILP) model for value based optimization problem in the context of transaction data. The problem discussed in this paper is to find an optimal set of item packages (or item sets making up the whole transaction) that returns maximum profit to the organization under some limited resources. The specification of this problem opens the way for applying existing and new MILP solution techniques to deal with a number of practical decision problems. The model has been implemented and tested with real life retail data. The test results are reported in the paper

    Misleading Generalized Itemset discovery

    Get PDF
    Frequent generalized itemset mining is a data mining technique utilized to discover a high-level view of interesting knowledge hidden in the analyzed data. By exploiting a taxonomy, patterns are usually extracted at any level of abstraction. However, some misleading high-level patterns could be included in the mined set. This paper proposes a novel generalized itemset type, namely the Misleading Generalized Itemset (MGI). Each MGI represents a frequent generalized itemset X and its set E of low-level frequent descendants for which the correlation type is in contrast to the one of X. To allow experts to analyze the misleading high-level data correlations separately and exploit such knowledge by making different decisions, MGIs are extracted only if the low-level descendant itemsets that represent contrasting correlations cover almost the same portion of data as the high-level (misleading) ancestor. An algorithm to mine MGIs at the top of traditional generalized itemsets is also proposed. The experiments performed on both real and synthetic datasets demonstrate the effectiveness and efficiency of the proposed approac

    Expressive generalized itemsets

    Get PDF
    Generalized itemset mining is a powerful tool to discover multiple-level correlations among the analyzed data. A taxonomy is used to aggregate data items into higher-level concepts and to discover frequent recurrences among data items at different granularity levels. However, since traditional high-level itemsets may also represent the knowledge covered by their lower-level frequent descendant itemsets, the expressiveness of high-level itemsets can be rather limited. To overcome this issue, this article proposes two novel itemset types, called Expressive Generalized Itemset (EGI) and Maximal Expressive Generalized Itemset (Max-EGI), in which the frequency of occurrence of a high-level itemset is evaluated only on the portion of data not yet covered by any of its frequent descendants. Specifically, EGI s represent, at a high level of abstraction, the knowledge associated with sets of infrequent itemsets, while Max-EGIs compactly represent all the infrequent descendants of a generalized itemset. Furthermore, we also propose an algorithm to discover Max-EGIs at the top of the traditionally mined itemsets. Experiments, performed on both real and synthetic datasets, demonstrate the effectiveness, efficiency, and scalability of the proposed approac

    Discovering itemset interactions

    Get PDF
    Itemsets, which are treated as intermediate results in association mining, have attracted significant research due to the inherent complexity of their generation. However, there is currently little literature focusing upon the interactions between itemsets, the nature of which may potentially contain valuable information. This paper presents a novel tree-based approach to discovering item-set interactions, a task which cannot be undertaken by current association mining techniques
    • …
    corecore