3,852 research outputs found

    Software defect prediction: do different classifiers find the same defects?

    Get PDF
    Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.During the last 10 years, hundreds of different defect prediction models have been published. The performance of the classifiers used in these models is reported to be similar with models rarely performing above the predictive performance ceiling of about 80% recall. We investigate the individual defects that four classifiers predict and analyse the level of prediction uncertainty produced by these classifiers. We perform a sensitivity analysis to compare the performance of Random Forest, Naïve Bayes, RPart and SVM classifiers when predicting defects in NASA, open source and commercial datasets. The defect predictions that each classifier makes is captured in a confusion matrix and the prediction uncertainty of each classifier is compared. Despite similar predictive performance values for these four classifiers, each detects different sets of defects. Some classifiers are more consistent in predicting defects than others. Our results confirm that a unique subset of defects can be detected by specific classifiers. However, while some classifiers are consistent in the predictions they make, other classifiers vary in their predictions. Given our results, we conclude that classifier ensembles with decision-making strategies not based on majority voting are likely to perform best in defect prediction.Peer reviewedFinal Published versio

    Software evolution prediction using seasonal time analysis: a comparative study

    Get PDF
    Prediction models of software change requests are useful for supporting rational and timely resource allocation to the evolution process. In this paper we use a time series forecasting model to predict software maintenance and evolution requests in an open source software project (Eclipse), as an example of projects with seasonal release cycles. We build an ARIMA model based on data collected from Eclipse’s change request tracking system since the project’s start. A change request may refer to defects found in the software, but also to suggested improvements in the system under scrutiny. Our model includes the identification of seasonal patterns and tendencies, and is validated through the forecast of the change requests evolution for the next 12 months. The usage of seasonal information significantly improves the estimation ability of this model, when compared to other ARIMA models found in the literature, and does so for a much longer estimation period. Being able to accurately forecast the change requests’ evolution over a fairly long time period is an important ability for enabling adequate process control in maintenance activities, and facilitates effort estimation and timely resources allocation. The approach presented in this paper is suitable for projects with a relatively long history, as the model building process relies on historic data

    International conference on software engineering and knowledge engineering: Session chair

    Get PDF
    The Thirtieth International Conference on Software Engineering and Knowledge Engineering (SEKE 2018) will be held at the Hotel Pullman, San Francisco Bay, USA, from July 1 to July 3, 2018. SEKE2018 will also be dedicated in memory of Professor Lofti Zadeh, a great scholar, pioneer and leader in fuzzy sets theory and soft computing. The conference aims at bringing together experts in software engineering and knowledge engineering to discuss on relevant results in either software engineering or knowledge engineering or both. Special emphasis will be put on the transference of methods between both domains. The theme this year is soft computing in software engineering & knowledge engineering. Submission of papers and demos are both welcome
    • …
    corecore