262 research outputs found

    Synthesizing Program Input Grammars

    Full text link
    We present an algorithm for synthesizing a context-free grammar encoding the language of valid program inputs from a set of input examples and blackbox access to the program. Our algorithm addresses shortcomings of existing grammar inference algorithms, which both severely overgeneralize and are prohibitively slow. Our implementation, GLADE, leverages the grammar synthesized by our algorithm to fuzz test programs with structured inputs. We show that GLADE substantially increases the incremental coverage on valid inputs compared to two baseline fuzzers

    FairFuzz: Targeting Rare Branches to Rapidly Increase Greybox Fuzz Testing Coverage

    Full text link
    In recent years, fuzz testing has proven itself to be one of the most effective techniques for finding correctness bugs and security vulnerabilities in practice. One particular fuzz testing tool, American Fuzzy Lop or AFL, has become popular thanks to its ease-of-use and bug-finding power. However, AFL remains limited in the depth of program coverage it achieves, in particular because it does not consider which parts of program inputs should not be mutated in order to maintain deep program coverage. We propose an approach, FairFuzz, that helps alleviate this limitation in two key steps. First, FairFuzz automatically prioritizes inputs exercising rare parts of the program under test. Second, it automatically adjusts the mutation of inputs so that the mutated inputs are more likely to exercise these same rare parts of the program. We conduct evaluation on real-world programs against state-of-the-art versions of AFL, thoroughly repeating experiments to get good measures of variability. We find that on certain benchmarks FairFuzz shows significant coverage increases after 24 hours compared to state-of-the-art versions of AFL, while on others it achieves high program coverage at a significantly faster rate

    Towards Smart Hybrid Fuzzing for Smart Contracts

    Get PDF
    Smart contracts are Turing-complete programs that are executed across a blockchain network. Unlike traditional programs, once deployed they cannot be modified. As smart contracts become more popular and carry more value, they become more of an interesting target for attackers. In recent years, smart contracts suffered major exploits, costing millions of dollars, due to programming errors. As a result, a variety of tools for detecting bugs has been proposed. However, majority of these tools often yield many false positives due to over-approximation or poor code coverage due to complex path constraints. Fuzzing or fuzz testing is a popular and effective software testing technique. However, traditional fuzzers tend to be more effective towards finding shallow bugs and less effective in finding bugs that lie deeper in the execution. In this work, we present CONFUZZIUS, a hybrid fuzzer that combines evolutionary fuzzing with constraint solving in order to execute more code and find more bugs in smart contracts. Evolutionary fuzzing is used to exercise shallow parts of a smart contract, while constraint solving is used to generate inputs which satisfy complex conditions that prevent the evolutionary fuzzing from exploring deeper paths. Moreover, we use data dependency analysis to efficiently generate sequences of transactions, that create specific contract states in which bugs may be hidden. We evaluate the effectiveness of our fuzzing strategy, by comparing CONFUZZIUS with state-of-the-art symbolic execution tools and fuzzers. Our evaluation shows that our hybrid fuzzing approach produces significantly better results than state-of-the-art symbolic execution tools and fuzzers
    corecore