103,952 research outputs found

    Conformance Checking Based on Multi-Perspective Declarative Process Models

    Full text link
    Process mining is a family of techniques that aim at analyzing business process execution data recorded in event logs. Conformance checking is a branch of this discipline embracing approaches for verifying whether the behavior of a process, as recorded in a log, is in line with some expected behaviors provided in the form of a process model. The majority of these approaches require the input process model to be procedural (e.g., a Petri net). However, in turbulent environments, characterized by high variability, the process behavior is less stable and predictable. In these environments, procedural process models are less suitable to describe a business process. Declarative specifications, working in an open world assumption, allow the modeler to express several possible execution paths as a compact set of constraints. Any process execution that does not contradict these constraints is allowed. One of the open challenges in the context of conformance checking with declarative models is the capability of supporting multi-perspective specifications. In this paper, we close this gap by providing a framework for conformance checking based on MP-Declare, a multi-perspective version of the declarative process modeling language Declare. The approach has been implemented in the process mining tool ProM and has been experimented in three real life case studies

    Predictive Monitoring of Business Processes

    Full text link
    Modern information systems that support complex business processes generally maintain significant amounts of process execution data, particularly records of events corresponding to the execution of activities (event logs). In this paper, we present an approach to analyze such event logs in order to predictively monitor business goals during business process execution. At any point during an execution of a process, the user can define business goals in the form of linear temporal logic rules. When an activity is being executed, the framework identifies input data values that are more (or less) likely to lead to the achievement of each business goal. Unlike reactive compliance monitoring approaches that detect violations only after they have occurred, our predictive monitoring approach provides early advice so that users can steer ongoing process executions towards the achievement of business goals. In other words, violations are predicted (and potentially prevented) rather than merely detected. The approach has been implemented in the ProM process mining toolset and validated on a real-life log pertaining to the treatment of cancer patients in a large hospital

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Big Data in Critical Infrastructures Security Monitoring: Challenges and Opportunities

    Full text link
    Critical Infrastructures (CIs), such as smart power grids, transport systems, and financial infrastructures, are more and more vulnerable to cyber threats, due to the adoption of commodity computing facilities. Despite the use of several monitoring tools, recent attacks have proven that current defensive mechanisms for CIs are not effective enough against most advanced threats. In this paper we explore the idea of a framework leveraging multiple data sources to improve protection capabilities of CIs. Challenges and opportunities are discussed along three main research directions: i) use of distinct and heterogeneous data sources, ii) monitoring with adaptive granularity, and iii) attack modeling and runtime combination of multiple data analysis techniques.Comment: EDCC-2014, BIG4CIP-201

    Model-driven Enterprise Systems Configuration

    Get PDF
    Enterprise Systems potentially lead to significant efficiency gains but require a well-conducted configuration process. A promising idea to manage and simplify the configuration process is based on the premise of using reference models for this task. Our paper continues along this idea and delivers a two-fold contribution: first, we present a generic process for the task of model-driven Enterprise Systems configuration including the steps of (a) Specification of configurable reference models, (b) Configuration of configurable reference models, (c) Transformation of configured reference models to regular build time models, (d) Deployment of the generated build time models, (e) Controlling of implementation models to provide input to the configuration, and (f) Consolidation of implementation models to provide input to reference model specification. We discuss inputs and outputs as well as the involvement of different roles and validation mechanisms. Second, we present an instantiation case of this generic process for Enterprise Systems configuration based on Configurable EPCs

    A review of key planning and scheduling in the rail industry in Europe and UK

    Get PDF
    Planning and scheduling activities within the rail industry have benefited from developments in computer-based simulation and modelling techniques over the last 25 years. Increasingly, the use of computational intelligence in such tasks is featuring more heavily in research publications. This paper examines a number of common rail-based planning and scheduling activities and how they benefit from five broad technology approaches. Summary tables of papers are provided relating to rail planning and scheduling activities and to the use of expert and decision systems in the rail industry.EPSR

    Integration of decision support systems to improve decision support performance

    Get PDF
    Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes

    Towards an ontology for process monitoring and mining

    Get PDF
    Business Process Analysis (BPA) aims at monitoring, diagnosing, simulating and mining enacted processes in order to support the analysis and enhancement of process models. An effective BPA solution must provide the means for analysing existing e-businesses at three levels of abstraction: the Business Level, the Process Level and the IT Level. BPA requires semantic information that spans these layers of abstraction and which should be easily retrieved from audit trails. To cater for this, we describe the Process Mining Ontology and the Events Ontology which aim to support the analysis of enacted processes at different levels of abstraction spanning from fine grain technical details to coarse grain aspects at the Business Level
    corecore