60,190 research outputs found

    Controlling False Positives in Association Rule Mining

    Get PDF
    Association rule mining is an important problem in the data mining area. It enumerates and tests a large number of rules on a dataset and outputs rules that satisfy user-specified constraints. Due to the large number of rules being tested, rules that do not represent real systematic effect in the data can satisfy the given constraints purely by random chance. Hence association rule mining often suffers from a high risk of false positive errors. There is a lack of comprehensive study on controlling false positives in association rule mining. In this paper, we adopt three multiple testing correction approaches---the direct adjustment approach, the permutation-based approach and the holdout approach---to control false positives in association rule mining, and conduct extensive experiments to study their performance. Our results show that (1) Numerous spurious rules are generated if no correction is made. (2) The three approaches can control false positives effectively. Among the three approaches, the permutation-based approach has the highest power of detecting real association rules, but it is very computationally expensive. We employ several techniques to reduce its cost effectively.Comment: VLDB201

    Association Rules Mining Based Clinical Observations

    Full text link
    Healthcare institutes enrich the repository of patients' disease related information in an increasing manner which could have been more useful by carrying out relational analysis. Data mining algorithms are proven to be quite useful in exploring useful correlations from larger data repositories. In this paper we have implemented Association Rules mining based a novel idea for finding co-occurrences of diseases carried by a patient using the healthcare repository. We have developed a system-prototype for Clinical State Correlation Prediction (CSCP) which extracts data from patients' healthcare database, transforms the OLTP data into a Data Warehouse by generating association rules. The CSCP system helps reveal relations among the diseases. The CSCP system predicts the correlation(s) among primary disease (the disease for which the patient visits the doctor) and secondary disease/s (which is/are other associated disease/s carried by the same patient having the primary disease).Comment: 5 pages, MEDINFO 2010, C. Safran et al. (Eds.), IOS Pres

    A Model-Based Frequency Constraint for Mining Associations from Transaction Data

    Full text link
    Mining frequent itemsets is a popular method for finding associated items in databases. For this method, support, the co-occurrence frequency of the items which form an association, is used as the primary indicator of the associations's significance. A single user-specified support threshold is used to decided if associations should be further investigated. Support has some known problems with rare items, favors shorter itemsets and sometimes produces misleading associations. In this paper we develop a novel model-based frequency constraint as an alternative to a single, user-specified minimum support. The constraint utilizes knowledge of the process generating transaction data by applying a simple stochastic mixture model (the NB model) which allows for transaction data's typically highly skewed item frequency distribution. A user-specified precision threshold is used together with the model to find local frequency thresholds for groups of itemsets. Based on the constraint we develop the notion of NB-frequent itemsets and adapt a mining algorithm to find all NB-frequent itemsets in a database. In experiments with publicly available transaction databases we show that the new constraint provides improvements over a single minimum support threshold and that the precision threshold is more robust and easier to set and interpret by the user
    corecore