2,631 research outputs found

    Intelligent Data Monitoring and Controlling System for Health Related Social Networks

    Get PDF
    Depression is a worldwide wellbeing concern in view of healthcare. Now a days, social media became popular to allow the affected people to share their experience in the form of posts. These kinds of experiences are stored in the database and extracted and analyzed to give the precautions to the other people or to recall the drugs from the side effects, and other service improvements in their treatment regarding to a particular disease. In such cases depression-related social websites are helpful to monitor or get knowledge in various kinds of drugs, side effects and to share the user experiences. In this paper, we proposed a social media website to allow the users to share the experiences of a particular disease i.e. depression and their experience over on it. We used a weighted network model to represent the activities in the social networks. The proposed work has three steps. The first one is to monitor the user activity and followed by network clustering and the module analysis. The persons who likes a particular post comes under a group and those who contrasted belongs to other group. The stop word technique we have implemented in this work is helpful to avoid the misleading communication over the posts and for the efficient user interaction. The statistical analysis of this kind of user interactions are helpful in health networks to gain much knowledge about a specific disease. This approach will enable all the gatherings to take a part and for the future healthcare improvements to the patients suffering from a disease

    Mining social media data for biomedical signals and health-related behavior

    Full text link
    Social media data has been increasingly used to study biomedical and health-related phenomena. From cohort level discussions of a condition to planetary level analyses of sentiment, social media has provided scientists with unprecedented amounts of data to study human behavior and response associated with a variety of health conditions and medical treatments. Here we review recent work in mining social media for biomedical, epidemiological, and social phenomena information relevant to the multilevel complexity of human health. We pay particular attention to topics where social media data analysis has shown the most progress, including pharmacovigilance, sentiment analysis especially for mental health, and other areas. We also discuss a variety of innovative uses of social media data for health-related applications and important limitations in social media data access and use.Comment: To appear in the Annual Review of Biomedical Data Scienc

    ์ง„๋ฃŒ ๋‚ด์—ญ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜์˜ ๊ฑด๊ฐ•๋ณดํ—˜ ๋‚จ์šฉ ํƒ์ง€

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2020. 8. ์กฐ์„ฑ์ค€.As global life expectancy increases, spending on healthcare grows in accordance in order to improve quality of life. However, due to expensive price of medical care, the bare cost of healthcare services would inevitably places great financial burden to individuals and households. In this light, many countries have devised and established their own public healthcare insurance systems to help people receive medical services at a lower price. Since reimbursements are made ex-post, unethical practices arise, exploiting the post-payment structure of the insurance system. The archetypes of such behavior are overdiagnosis, the act of manipulating patients diseases, and overtreatments, prescribing unnecessary drugs for the patient. These abusive behaviors are considered as one of the main sources of financial loss incurred in the healthcare system. In order to detect and prevent abuse, the national healthcare insurance hires medical professionals to manually examine whether the claim filing is medically legitimate or not. However, the review process is, unquestionably, very costly and time-consuming. In order to address these limitations, data mining techniques have been employed to detect problematic claims or abusive providers showing an abnormal billing pattern. However, these cases only used coarsely grained information such as claim-level or provider-level data. This extracted information may lead to degradation of the model's performance. In this thesis, we proposed abuse detection methods using the medical treatment data, which is the lowest level information of the healthcare insurance claim. Firstly, we propose a scoring model based on which abusive providers are detected and show that the review process with the proposed model is more efficient than that with the previous model which uses the provider-level variables as input variables. At the same time, we devise the evaluation metrics to quantify the efficiency of the review process. Secondly, we propose the method of detecting overtreatment under seasonality, which reflects more reality to the model. We propose a model embodying multiple structures specific to DRG codes selected as important for each given department. We show that the proposed method is more robust to the seasonality than the previous method. Thirdly, we propose an overtreatment detection model accounting for heterogeneous treatment between practitioners. We proposed a network-based approach through which the relationship between the diseases and treatments is considered during the overtreatment detection process. Experimental results show that the proposed method classify the treatment well which does not explicitly exist in the training set. From these works, we show that using treatment data allows modeling abuse detection at various levels: treatment, claim, and provider-level.์‚ฌ๋žŒ๋“ค์˜ ๊ธฐ๋Œ€์ˆ˜๋ช…์ด ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์‚ถ์˜ ์งˆ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋ณด๊ฑด์˜๋ฃŒ์— ์†Œ๋น„ํ•˜๋Š” ๊ธˆ์•ก์€ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ๋น„์‹ผ ์˜๋ฃŒ ์„œ๋น„์Šค ๋น„์šฉ์€ ํ•„์—ฐ์ ์œผ๋กœ ๊ฐœ์ธ๊ณผ ๊ฐ€์ •์—๊ฒŒ ํฐ ์žฌ์ •์  ๋ถ€๋‹ด์„ ์ฃผ๊ฒŒ๋œ๋‹ค. ์ด๋ฅผ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด, ๋งŽ์€ ๊ตญ๊ฐ€์—์„œ๋Š” ๊ณต๊ณต ์˜๋ฃŒ ๋ณดํ—˜ ์‹œ์Šคํ…œ์„ ๋„์ž…ํ•˜์—ฌ ์‚ฌ๋žŒ๋“ค์ด ์ ์ ˆํ•œ ๊ฐ€๊ฒฉ์— ์˜๋ฃŒ์„œ๋น„์Šค๋ฅผ ๋ฐ›์„ ์ˆ˜ ์žˆ๋„๋ก ํ•˜๊ณ  ์žˆ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ, ํ™˜์ž๊ฐ€ ๋จผ์ € ์„œ๋น„์Šค๋ฅผ ๋ฐ›๊ณ  ๋‚˜์„œ ์ผ๋ถ€๋งŒ ์ง€๋ถˆํ•˜๊ณ  ๋‚˜๋ฉด, ๋ณดํ—˜ ํšŒ์‚ฌ๊ฐ€ ์‚ฌํ›„์— ํ•ด๋‹น ์˜๋ฃŒ ๊ธฐ๊ด€์— ์ž”์—ฌ ๊ธˆ์•ก์„ ์ƒํ™˜์„ ํ•˜๋Š” ์ œ๋„๋กœ ์šด์˜๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์ œ๋„๋ฅผ ์•…์šฉํ•˜์—ฌ ํ™˜์ž์˜ ์งˆ๋ณ‘์„ ์กฐ์ž‘ํ•˜๊ฑฐ๋‚˜ ๊ณผ์ž‰์ง„๋ฃŒ๋ฅผ ํ•˜๋Š” ๋“ฑ์˜ ๋ถ€๋‹น์ฒญ๊ตฌ๊ฐ€ ๋ฐœ์ƒํ•˜๊ธฐ๋„ ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ–‰์œ„๋“ค์€ ์˜๋ฃŒ ์‹œ์Šคํ…œ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ฃผ์š” ์žฌ์ • ์†์‹ค์˜ ์ด์œ  ์ค‘ ํ•˜๋‚˜๋กœ, ์ด๋ฅผ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด, ๋ณดํ—˜ํšŒ์‚ฌ์—์„œ๋Š” ์˜๋ฃŒ ์ „๋ฌธ๊ฐ€๋ฅผ ๊ณ ์šฉํ•˜์—ฌ ์˜ํ•™์  ์ •๋‹น์„ฑ์—ฌ๋ถ€๋ฅผ ์ผ์ผํžˆ ๊ฒ€์‚ฌํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์ด๋Ÿฌํ•œ ๊ฒ€ํ† ๊ณผ์ •์€ ๋งค์šฐ ๋น„์‹ธ๊ณ  ๋งŽ์€ ์‹œ๊ฐ„์ด ์†Œ์š”๋œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒ€ํ† ๊ณผ์ •์„ ํšจ์œจ์ ์œผ๋กœ ํ•˜๊ธฐ ์œ„ํ•ด, ๋ฐ์ดํ„ฐ๋งˆ์ด๋‹ ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ ๋ฌธ์ œ๊ฐ€ ์žˆ๋Š” ์ฒญ๊ตฌ์„œ๋‚˜ ์ฒญ๊ตฌ ํŒจํ„ด์ด ๋น„์ •์ƒ์ ์ธ ์˜๋ฃŒ ์„œ๋น„์Šค ๊ณต๊ธ‰์ž๋ฅผ ํƒ์ง€ํ•˜๋Š” ์—ฐ๊ตฌ๊ฐ€ ์žˆ์–ด์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋“ค์€ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์ฒญ๊ตฌ์„œ ๋‹จ์œ„๋‚˜ ๊ณต๊ธ‰์ž ๋‹จ์œ„์˜ ๋ณ€์ˆ˜๋ฅผ ์œ ๋„ํ•˜์—ฌ ๋ชจ๋ธ์„ ํ•™์Šตํ•œ ์‚ฌ๋ก€๋“ค๋กœ, ๊ฐ€์žฅ ๋‚ฎ์€ ๋‹จ์œ„์˜ ๋ฐ์ดํ„ฐ์ธ ์ง„๋ฃŒ ๋‚ด์—ญ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์ง€ ๋ชปํ–ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ฒญ๊ตฌ์„œ์—์„œ ๊ฐ€์žฅ ๋‚ฎ์€ ๋‹จ์œ„์˜ ๋ฐ์ดํ„ฐ์ธ ์ง„๋ฃŒ ๋‚ด์—ญ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ถ€๋‹น์ฒญ๊ตฌ๋ฅผ ํƒ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ์งธ, ๋น„์ •์ƒ์ ์ธ ์ฒญ๊ตฌ ํŒจํ„ด์„ ๊ฐ–๋Š” ์˜๋ฃŒ ์„œ๋น„์Šค ์ œ๊ณต์ž๋ฅผ ํƒ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด๋ฅผ ์‹ค์ œ ๋ฐ์ดํ„ฐ์— ์ ์šฉํ•˜์˜€์„ ๋•Œ, ๊ธฐ์กด์˜ ๊ณต๊ธ‰์ž ๋‹จ์œ„์˜ ๋ณ€์ˆ˜๋ฅผ ์‚ฌ์šฉํ•œ ๋ฐฉ๋ฒ•๋ณด๋‹ค ๋” ํšจ์œจ์ ์ธ ์‹ฌ์‚ฌ๊ฐ€ ์ด๋ฃจ์–ด ์ง์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด ๋•Œ, ํšจ์œจ์„ฑ์„ ์ •๋Ÿ‰ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ํ‰๊ฐ€ ์ฒ™๋„๋„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋‘˜์งธ๋กœ, ์ฒญ๊ตฌ์„œ์˜ ๊ณ„์ ˆ์„ฑ์ด ์กด์žฌํ•˜๋Š” ์ƒํ™ฉ์—์„œ ๊ณผ์ž‰์ง„๋ฃŒ๋ฅผ ํƒ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด ๋•Œ, ์ง„๋ฃŒ ๊ณผ๋ชฉ๋‹จ์œ„๋กœ ๋ชจ๋ธ์„ ์šด์˜ํ•˜๋Š” ๋Œ€์‹  ์งˆ๋ณ‘๊ตฐ(DRG) ๋‹จ์œ„๋กœ ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๊ณ  ํ‰๊ฐ€ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์‹ค์ œ ๋ฐ์ดํ„ฐ์— ์ ์šฉํ•˜์˜€์„ ๋•Œ, ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์ด ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ณด๋‹ค ๊ณ„์ ˆ์„ฑ์— ๋” ๊ฐ•๊ฑดํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์…‹์งธ๋กœ, ๋™์ผ ํ™˜์ž์— ๋Œ€ํ•ด์„œ ์˜์‚ฌ๊ฐ„์˜ ์ƒ์ดํ•œ ์ง„๋ฃŒ ํŒจํ„ด์„ ๊ฐ–๋Š” ํ™˜๊ฒฝ์—์„œ์˜ ๊ณผ์ž‰์ง„๋ฃŒ ํƒ์ง€ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด๋Š” ํ™˜์ž์˜ ์งˆ๋ณ‘๊ณผ ์ง„๋ฃŒ๋‚ด์—ญ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ๋„คํŠธ์›Œํฌ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ชจ๋ธ๋งํ•˜๋Š”๊ฒƒ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์ด ํ•™์Šต ๋ฐ์ดํ„ฐ์—์„œ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š๋Š” ์ง„๋ฃŒ ํŒจํ„ด์— ๋Œ€ํ•ด์„œ๋„ ์ž˜ ๋ถ„๋ฅ˜ํ•จ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋“ค๋กœ๋ถ€ํ„ฐ ์ง„๋ฃŒ ๋‚ด์—ญ์„ ํ™œ์šฉํ•˜์˜€์„ ๋•Œ, ์ง„๋ฃŒ๋‚ด์—ญ, ์ฒญ๊ตฌ์„œ, ์˜๋ฃŒ ์„œ๋น„์Šค ์ œ๊ณต์ž ๋“ฑ ๋‹ค์–‘ํ•œ ๋ ˆ๋ฒจ์—์„œ์˜ ๋ถ€๋‹น ์ฒญ๊ตฌ๋ฅผ ํƒ์ง€ํ•  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค.Chapter 1 Introduction 1 Chapter 2 Detection of Abusive Providers by department with Neural Network 9 2.1 Background 9 2.2 Literature Review 12 2.2.1 Abnormality Detection in Healthcare Insurance with Datamining Technique 12 2.2.2 Feed-Forward Neural Network 17 2.3 Proposed Method 21 2.3.1 Calculating the Likelihood of Abuse for each Treatment with Deep Neural Network 22 2.3.2 Calculating the Abuse Score of the Provider 25 2.4 Experiments 26 2.4.1 Data Description 27 2.4.2 Experimental Settings 32 2.4.3 Evaluation Measure (1): Relative Efficiency 33 2.4.4 Evaluation Measure (2): Precision at k 37 2.5 Results 38 2.5.1 Results in the test set 38 2.5.2 The Relationship among the Claimed Amount, the Abused Amount and the Abuse Score 40 2.5.3 The Relationship between the Performance of the Treatment Scoring Model and Review Efficiency 41 2.5.4 Treatment Scoring Model Results 42 2.5.5 Post-deployment Performance 44 2.6 Summary 45 Chapter 3 Detection of overtreatment by Diagnosis-related Group with Neural Network 48 3.1 Background 48 3.2 Literature review 51 3.2.1 Seasonality in disease 51 3.2.2 Diagnosis related group 52 3.3 Proposed method 54 3.3.1 Training a deep neural network model for treatment classi fication 55 3.3.2 Comparing the Performance of DRG-based Model against the department-based Model 57 3.4 Experiments 60 3.4.1 Data Description and Preprocessing 60 3.4.2 Performance Measures 64 3.4.3 Experimental Settings 65 3.5 Results 65 3.5.1 Overtreatment Detection 65 3.5.2 Abnormal Claim Detection 67 3.6 Summary 68 Chapter 4 Detection of overtreatment with graph embedding of disease-treatment pair 70 4.1 Background 70 4.2 Literature review 72 4.2.1 Graph embedding methods 73 4.2.2 Application of graph embedding methods to biomedical data analysis 79 4.2.3 Medical concept embedding methods 87 4.3 Proposed method 88 4.3.1 Network construction 89 4.3.2 Link Prediction between the Disease and the Treatment 90 4.3.3 Overtreatment Detection 93 4.4 Experiments 96 4.4.1 Data Description 97 4.4.2 Experimental Settings 99 4.5 Results 102 4.5.1 Network Construction 102 4.5.2 Link Prediction between the Disease and the Treatment 104 4.5.3 Overtreatment Detection 105 4.6 Summary 106 Chapter 5 Conclusion 108 5.1 Contribution 108 5.2 Future Work 110 Bibliography 112 ๊ตญ๋ฌธ์ดˆ๋ก 129Docto

    Drug repurposing using biological networks

    Get PDF
    Drug repositioning is a strategy to identify new uses for existing, approved, or research drugs that are outside the scope of its original medical indication. Drug repurposing is based on the fact that one drug can act on multiple targets or that two diseases can have molecular similarities, among others. Currently, thanks to the rapid advancement of high-performance technologies, a massive amount of biological and biomedical data is being generated. This allows the use of computational methods and models based on biological networks to develop new possibilities for drug repurposing. Therefore, here, we provide an in-depth review of the main applications of drug repositioning that have been carried out using biological network models. The goal of this review is to show the usefulness of these computational methods to predict associations and to find candidate drugs for repositioning in new indications of certain diseases

    Artificial Intelligence for Participatory Health: Applications, Impact, and Future Implications

    Get PDF
    Objective: Artificial intelligence (AI) provides people and professionals working in the field of participatory health informatics an opportunity to derive robust insights from a variety of online sources. The objective of this paper is to identify current state of the art and application areas of AI in the context of participatory health. Methods: A search was conducted across seven databases (PubMed, Embase, CINAHL, PsychInfo, ACM Digital Library, IEEExplore, and SCOPUS), covering articles published since 2013. Additionally, clinical trials involving AI in participatory health contexts registered at clinicaltrials.gov were collected and analyzed. Results: Twenty-two articles and 12 trials were selected for review. The most common application of AI in participatory health was the secondary analysis of social media data: self-reported data including patient experiences with healthcare facilities, reports of adverse drug reactions, safety and efficacy concerns about over-the-counter medications, and other perspectives on medications. Other application areas included determining which online forum threads required moderator assistance, identifying users who were likely to drop out from a forum, extracting terms used in an online forum to learn its vocabulary, highlighting contextual information that is missing from online questions and answers, and paraphrasing technical medical terms for consumers. Conclusions: While AI for supporting participatory health is still in its infancy, there are a number of important research priorities that should be considered for the advancement of the field. Further research evaluating the impact of AI in participatory health informatics on the psychosocial wellbeing of individuals would help in facilitating the wider acceptance of AI into the healthcare ecosystem

    ๋”ฅ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ๋ฅผ ํ™œ์šฉํ•œ ์˜ํ•™ ๊ฐœ๋… ๋ฐ ํ™˜์ž ํ‘œํ˜„ ํ•™์Šต๊ณผ ์˜๋ฃŒ ๋ฌธ์ œ์—์˜ ์‘์šฉ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022. 8. ์ •๊ต๋ฏผ.๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์€ ์ „๊ตญ๋ฏผ ์˜๋ฃŒ ๋ณดํ—˜๋ฐ์ดํ„ฐ์ธ ํ‘œ๋ณธ์ฝ”ํ˜ธํŠธDB๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋”ฅ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ ๊ธฐ๋ฐ˜์˜ ์˜ํ•™ ๊ฐœ๋… ๋ฐ ํ™˜์ž ํ‘œํ˜„ ํ•™์Šต ๋ฐฉ๋ฒ•๊ณผ ์˜๋ฃŒ ๋ฌธ์ œ ํ•ด๊ฒฐ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋จผ์ € ์ˆœ์ฐจ์ ์ธ ํ™˜์ž ์˜๋ฃŒ ๊ธฐ๋ก๊ณผ ๊ฐœ์ธ ํ”„๋กœํŒŒ์ผ ์ •๋ณด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ™˜์ž ํ‘œํ˜„์„ ํ•™์Šตํ•˜๊ณ  ํ–ฅํ›„ ์งˆ๋ณ‘ ์ง„๋‹จ ๊ฐ€๋Šฅ์„ฑ์„ ์˜ˆ์ธกํ•˜๋Š” ์žฌ๊ท€์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์šฐ๋ฆฌ๋Š” ๋‹ค์–‘ํ•œ ์„ฑ๊ฒฉ์˜ ํ™˜์ž ์ •๋ณด๋ฅผ ํšจ์œจ์ ์œผ๋กœ ํ˜ผํ•ฉํ•˜๋Š” ๊ตฌ์กฐ๋ฅผ ๋„์ž…ํ•˜์—ฌ ํฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์–ป์—ˆ๋‹ค. ๋˜ํ•œ ํ™˜์ž์˜ ์˜๋ฃŒ ๊ธฐ๋ก์„ ์ด๋ฃจ๋Š” ์˜๋ฃŒ ์ฝ”๋“œ๋“ค์„ ๋ถ„์‚ฐ ํ‘œํ˜„์œผ๋กœ ๋‚˜ํƒ€๋‚ด ์ถ”๊ฐ€ ์„ฑ๋Šฅ ๊ฐœ์„ ์„ ์ด๋ฃจ์—ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์˜๋ฃŒ ์ฝ”๋“œ์˜ ๋ถ„์‚ฐ ํ‘œํ˜„์ด ์ค‘์š”ํ•œ ์‹œ๊ฐ„์  ์ •๋ณด๋ฅผ ๋‹ด๊ณ  ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๊ณ , ์ด์–ด์ง€๋Š” ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์‹œ๊ฐ„์  ์ •๋ณด๊ฐ€ ๊ฐ•ํ™”๋  ์ˆ˜ ์žˆ๋„๋ก ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ๋ฅผ ๋„์ž…ํ•˜์˜€๋‹ค. ์šฐ๋ฆฌ๋Š” ์˜๋ฃŒ ์ฝ”๋“œ์˜ ๋ถ„์‚ฐ ํ‘œํ˜„ ๊ฐ„์˜ ์œ ์‚ฌ๋„์™€ ํ†ต๊ณ„์  ์ •๋ณด๋ฅผ ๊ฐ€์ง€๊ณ  ๊ทธ๋ž˜ํ”„๋ฅผ ๊ตฌ์ถ•ํ•˜์˜€๊ณ  ๊ทธ๋ž˜ํ”„ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ๋ฅผ ํ™œ์šฉ, ์‹œ๊ฐ„/ํ†ต๊ณ„์  ์ •๋ณด๊ฐ€ ๊ฐ•ํ™”๋œ ์˜๋ฃŒ ์ฝ”๋“œ์˜ ํ‘œํ˜„ ๋ฒกํ„ฐ๋ฅผ ์–ป์—ˆ๋‹ค. ํš๋“ํ•œ ์˜๋ฃŒ ์ฝ”๋“œ ๋ฒกํ„ฐ๋ฅผ ํ†ตํ•ด ์‹œํŒ ์•ฝ๋ฌผ์˜ ์ž ์žฌ์ ์ธ ๋ถ€์ž‘์šฉ ์‹ ํ˜ธ๋ฅผ ํƒ์ง€ํ•˜๋Š” ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ ๊ฒฐ๊ณผ, ๊ธฐ์กด์˜ ๋ถ€์ž‘์šฉ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์— ์กด์žฌํ•˜์ง€ ์•Š๋Š” ์‚ฌ๋ก€๊นŒ์ง€๋„ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋ถ„๋Ÿ‰์— ๋น„ํ•ด ์ฃผ์š” ์ •๋ณด๊ฐ€ ํฌ์†Œํ•˜๋‹ค๋Š” ์˜๋ฃŒ ๊ธฐ๋ก์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์ง€์‹๊ทธ๋ž˜ํ”„๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์‚ฌ์ „ ์˜ํ•™ ์ง€์‹์„ ๋ณด๊ฐ•ํ•˜์˜€๋‹ค. ์ด๋•Œ ํ™˜์ž์˜ ์˜๋ฃŒ ๊ธฐ๋ก์„ ๊ตฌ์„ฑํ•˜๋Š” ์ง€์‹๊ทธ๋ž˜ํ”„์˜ ๋ถ€๋ถ„๋งŒ์„ ์ถ”์ถœํ•˜์—ฌ ๊ฐœ์ธํ™”๋œ ์ง€์‹๊ทธ๋ž˜ํ”„๋ฅผ ๋งŒ๋“ค๊ณ  ๊ทธ๋ž˜ํ”„ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ๋ฅผ ํ†ตํ•ด ๊ทธ๋ž˜ํ”„์˜ ํ‘œํ˜„ ๋ฒกํ„ฐ๋ฅผ ํš๋“ํ•˜์˜€๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ์ˆœ์ฐจ์ ์ธ ์˜๋ฃŒ ๊ธฐ๋ก์„ ํ•จ์ถ•ํ•œ ํ™˜์ž ํ‘œํ˜„๊ณผ ๋”๋ถˆ์–ด ๊ฐœ์ธํ™”๋œ ์˜ํ•™ ์ง€์‹์„ ํ•จ์ถ•ํ•œ ํ‘œํ˜„์„ ํ•จ๊ป˜ ์‚ฌ์šฉํ•˜์—ฌ ํ–ฅํ›„ ์งˆ๋ณ‘ ๋ฐ ์ง„๋‹จ ์˜ˆ์ธก ๋ฌธ์ œ์— ํ™œ์šฉํ•˜์˜€๋‹ค.This dissertation proposes a deep neural network-based medical concept and patient representation learning methods using medical claims data to solve two healthcare tasks, i.e., clinical outcome prediction and post-marketing adverse drug reaction (ADR) signal detection. First, we propose SAF-RNN, a Recurrent Neural Network (RNN)-based model that learns a deep patient representation based on the clinical sequences and patient characteristics. Our proposed model fuses different types of patient records using feature-based gating and self-attention. We demonstrate that high-level associations between two heterogeneous records are effectively extracted by our model, thus achieving state-of-the-art performances for predicting the risk probability of cardiovascular disease. Secondly, based on the observation that the distributed medical code embeddings represent temporal proximity between the medical codes, we introduce a graph structure to enhance the code embeddings with such temporal information. We construct a graph using the distributed code embeddings and the statistical information from the claims data. We then propose the Graph Neural Network(GNN)-based representation learning for post-marketing ADR detection. Our model shows competitive performances and provides valid ADR candidates. Finally, rather than using patient records alone, we utilize a knowledge graph to augment the patient representation with prior medical knowledge. Using SAF-RNN and GNN, the deep patient representation is learned from the clinical sequences and the personalized medical knowledge. It is then used to predict clinical outcomes, i.e., next diagnosis prediction and CVD risk prediction, resulting in state-of-the-art performances.1 Introduction 1 2 Background 8 2.1 Medical Concept Embedding 8 2.2 Encoding Sequential Information in Clinical Records 11 3 Deep Patient Representation with Heterogeneous Information 14 3.1 Related Work 16 3.2 Problem Statement 19 3.3 Method 20 3.3.1 RNN-based Disease Prediction Model 20 3.3.2 Self-Attentive Fusion (SAF) Encoder 23 3.4 Dataset and Experimental Setup 24 3.4.1 Dataset 24 3.4.2 Experimental Design 26 ii 3.4.3 Implementation Details 27 3.5 Experimental Results 28 3.5.1 Evaluation of CVD Prediction 28 3.5.2 Sensitivity Analysis 28 3.5.3 Ablation Studies 31 3.6 Further Investigation 32 3.6.1 Case Study: Patient-Centered Analysis 32 3.6.2 Data-Driven CVD Risk Factors 32 3.7 Conclusion 33 4 Graph-Enhanced Medical Concept Embedding 40 4.1 Related Work 42 4.2 Problem Statement 43 4.3 Method 44 4.3.1 Code Embedding Learning with Skip-gram Model 44 4.3.2 Drug-disease Graph Construction 45 4.3.3 A GNN-based Method for Learning Graph Structure 47 4.4 Dataset and Experimental Setup 49 4.4.1 Dataset 49 4.4.2 Experimental Design 50 4.4.3 Implementation Details 52 4.5 Experimental Results 53 4.5.1 Evaluation of ADR Detection 53 4.5.2 Newly-Described ADR Candidates 54 4.6 Conclusion 55 5 Knowledge-Augmented Deep Patient Representation 57 5.1 Related Work 60 5.1.1 Incorporating Prior Medical Knowledge for Clinical Outcome Prediction 60 5.1.2 Inductive KGC based on Subgraph Learning 61 5.2 Method 61 5.2.1 Extracting Personalized KG 61 5.2.2 KA-SAF: Knowledge-Augmented Self-Attentive Fusion Encoder 64 5.2.3 KGC as a Pre-training Task 68 5.2.4 Subgraph Infomax: SGI 69 5.3 Dataset and Experimental Setup 72 5.3.1 Clinical Outcome Prediction 72 5.3.2 Next Diagnosis Prediction 72 5.4 Experimental Results 73 5.4.1 Cardiovascular Disease Prediction 73 5.4.2 Next Diagnosis Prediction 73 5.4.3 KGC on SemMed KG 73 5.5 Conclusion 74 6 Conclusion 77 Abstract (In Korean) 90 Acknowlegement 92๋ฐ•

    Novel Natural Language Processing Models for Medical Terms and Symptoms Detection in Twitter

    Get PDF
    This dissertation focuses on disambiguation of language use on Twitter about drug use, consumption types of drugs, drug legalization, ontology-enhanced approaches, and prediction analysis of data-driven by developing novel NLP models. Three technical aims comprise this work: (a) leveraging pattern recognition techniques to improve the quality and quantity of crawled Twitter posts related to drug abuse; (b) using an expert-curated, domain-specific DsOn ontology model that improve knowledge extraction in the form of drug-to-symptom and drug-to-side effect relations; and (c) modeling the prediction of public perception of the drugโ€™s legalization and the sentiment analysis of drug consumption on Twitter. We collected 7.5 million data from August 2015 to March 2016. This work leveraged a longstanding, multidisciplinary collaboration between researchers at the Population & Center for Interventions, Treatment, and Addictions Research (CITAR) in the Boonshoft School of Medicine and the Department of Computer Science and Engineering. In addition, we aimed to develop and deploy an innovative prediction analysis algorithm for eDrugTrends, capable of semi-automated processing of Twitter data to identify emerging trends in cannabis and synthetic cannabinoid use in the U.S. In addition, the study included aim four, a use case study defined by tweets content analyzing PLWH, medication patterns, and identifying keyword trends via Twitter-based, user-generated content. This case study leveraged a multidisciplinary collaboration between researchers at the Departments of Family Medicine and Population and Public Health Sciences at Wright State Universityโ€™s Boonshoft School of Medicine and the Department of Computer Science and Engineering. We collected 65K data from February 2022 to July 2022 with the U.S.-based HIV knowledge domain recruited via the Twitter API streaming platform. For knowledge discovery, domain knowledge plays a significant role in powering many intelligent frameworks, such as data analysis, information retrieval, and pattern recognition. Recent NLP and semantic web advances have contributed to extending the domain knowledge of medical terms. These techniques required a bag of seeds for medical knowledge discovery. Various initiate seeds create irrelevant data to the noise and negatively impact the prediction analysis performance. The methodology of aim one, PatRDis classifier, applied for noisy and ambiguous issues, and aim two, DsOn Ontology model, applied for semantic parsing and enriching the online medical to classify the data for HIV care medications engagement and symptom detection from Twitter. By applying the methodology of aims 2 and 3, we solved the challenges of ambiguity and explored more than 1500 cannabis and cannabinoid slang terms. Sentiments measured preceding the election, such as states with high levels of positive sentiment preceding the election who were engaged in enhancing their legalization status. we also used the same dataset for prediction analysis for marijuana legalization and consumption trend analysis (Ohio public polling data). In Aim 4, we applied three experiments, ensemble-learning, the RNN-LSM, the NNBERT-CNN models, and five techniques to determine the tweets associated with medication adherence and HIV symptoms. The long short-term memory (LSTM) model and the CNN for sentence classification produce accurate results and have been recently used in NLP tasks. CNN models use convolutional layers and maximum pooling or max-overtime pooling layers to extract higher-level features, while LSTM models can capture long-term dependencies between word sequences hence are better used for text classification. We propose attention-based RNN, MLP, and CNN deep learning models that capitalize on the advantages of LSTM and BERT techniques with an additional attention mechanism. We trained the model using NNBERT to evaluate the proposed model\u27s performance. The test results showed that the proposed models produce more accurate classification results, and BERT obtained higher recall and F1 scores than MLP or LSTM models. In addition, We developed an intelligent tool capable of automated processing of Twitter data to identify emerging trends in HIV disease, HIV symptoms, and medication adherence
    • โ€ฆ
    corecore