96 research outputs found

    Web Caching and Prefetching with Cyclic Model Analysis of Web Object Sequences

    Get PDF
    Web caching is the process in which web objects are temporarily stored to reduce bandwidth consumption, server load and latency. Web prefetching is the process of fetching web objects from the server before they are actually requested by the client. Integration of caching and prefetching can be very beneficial as the two techniques can support each other. By implementing this integrated scheme in a client-side proxy, the perceived latency can be reduced for not one but many users. In this paper, we propose a new integrated caching and prefetching policy called the WCP-CMA which makes use of a profit-driven caching policy that takes into account the periodicity and cyclic behaviour of the web access sequences for deriving prefetching rules. Our experimental results have shown a 10%-15% increase in the hit ratios of the cached objects and 5%-10% decrease in delay compared to the existing schem

    Exploiting Data Mining Techniques for Broadcasting Data in Mobile Computing Environments

    Get PDF
    Cataloged from PDF version of article.Mobile computers can be equipped with wireless communication devices that enable users to access data services from any location. In wireless communication, the server-to-client (downlink) communication bandwidth is much higher than the client-to-server (uplink) communication bandwidth. This asymmetry makes the dissemination of data to client machines a desirable approach. However, dissemination of data by broadcasting may induce high access latency in case the number of broadcast data items is large. In this paper, we propose two methods aiming to reduce client access latency of broadcast data. Our methods are based on analyzing the broadcast history (i.e., the chronological sequence of items that have been requested by clients) using data mining techniques. With the first method, the data items in the broadcast disk are organized in such a way that the items requested subsequently are placed close to each other. The second method focuses on improving the cache hit ratio to be able to decrease the access latency. It enables clients to prefetch the data from the broadcast disk based on the rules extracted from previous data request patterns. The proposed methods are implemented on a Web log to estimate their effectiveness. It is shown through performance experiments that the proposed rule-based methods are effective in improving the system performance in terms of the average latency as well as the cache hit ratio of mobile clients

    Second chance: A hybrid approach for dynamic result caching and prefetching in search engines

    Get PDF
    Cataloged from PDF version of article.Web search engines are known to cache the results of previously issued queries. The stored results typically contain the document summaries and some data that is used to construct the final search result page returned to the user. An alternative strategy is to store in the cache only the result document IDs, which take much less space, allowing results of more queries to be cached. These two strategies lead to an interesting trade-off between the hit rate and the average query response latency. In this work, in order to exploit this trade-off, we propose a hybrid result caching strategy where a dynamic result cache is split into two sections: an HTML cache and a docID cache. Moreover, using a realistic cost model, we evaluate the performance of different result prefetching strategies for the proposed hybrid cache and the baseline HTML-only cache. Finally, we propose a machine learning approach to predict singleton queries, which occur only once in the query stream. We show that when the proposed hybrid result caching strategy is coupled with the singleton query predictor, the hit rate is further improved. © 2013 ACM

    On I/O Performance and Cost Efficiency of Cloud Storage: A Client\u27s Perspective

    Get PDF
    Cloud storage has gained increasing popularity in the past few years. In cloud storage, data are stored in the service provider’s data centers; users access data via the network and pay the fees based on the service usage. For such a new storage model, our prior wisdom and optimization schemes on conventional storage may not remain valid nor applicable to the emerging cloud storage. In this dissertation, we focus on understanding and optimizing the I/O performance and cost efficiency of cloud storage from a client’s perspective. We first conduct a comprehensive study to gain insight into the I/O performance behaviors of cloud storage from the client side. Through extensive experiments, we have obtained several critical findings and useful implications for system optimization. We then design a client cache framework, called Pacaca, to further improve end-to-end performance of cloud storage. Pacaca seamlessly integrates parallelized prefetching and cost-aware caching by utilizing the parallelism potential and object correlations of cloud storage. In addition to improving system performance, we have also made efforts to reduce the monetary cost of using cloud storage services by proposing a latency- and cost-aware client caching scheme, called GDS-LC, which can achieve two optimization goals for using cloud storage services: low access latency and low monetary cost. Our experimental results show that our proposed client-side solutions significantly outperform traditional methods. Our study contributes to inspiring the community to reconsider system optimization methods in the cloud environment, especially for the purpose of integrating cloud storage into the current storage stack as a primary storage layer

    A taxonomy of web prediction algorithms

    Full text link
    Web prefetching techniques are an attractive solution to reduce the user-perceived latency. These techniques are driven by a prediction engine or algorithm that guesses following actions of web users. A large amount of prediction algorithms has been proposed since the first prefetching approach was published, although it is only over the last two or three years when they have begun to be successfully implemented in commercial products. These algorithms can be implemented in any element of the web architecture and can use a wide variety of information as input. This affects their structure, data system, computational resources and accuracy. The knowledge of the input information and the understanding of how it can be handled to make predictions can help to improve the design of current prediction engines, and consequently prefetching techniques. This paper analyzes fifty of the most relevant algorithms proposed along 15 years of prefetching research and proposes a taxonomy where the algorithms are classified according to the input data they use. For each group, the main advantages and shortcomings are highlighted. © 2012 Elsevier Ltd. All rights reserved.This work has been partially supported by Spanish Ministry of Science and Innovation under Grant TIN2009-08201, Generalitat Valenciana under Grant GV/2011/002 and Universitat Politecnica de Valencia under Grant PAID-06-10/2424.Domenech, J.; De La Ossa Perez, BA.; Sahuquillo Borrás, J.; Gil Salinas, JA.; Pont Sanjuan, A. (2012). A taxonomy of web prediction algorithms. Expert Systems with Applications. 39(9):8496-8502. https://doi.org/10.1016/j.eswa.2012.01.140S8496850239

    Evaluation, Analysis and adaptation of web prefetching techniques in current web

    Full text link
    Abstract This dissertation is focused on the study of the prefetching technique applied to the World Wide Web. This technique lies in processing (e.g., downloading) a Web request before the user actually makes it. By doing so, the waiting time perceived by the user can be reduced, which is the main goal of the Web prefetching techniques. The study of the state of the art about Web prefetching showed the heterogeneity that exists in its performance evaluation. This heterogeneity is mainly focused on four issues: i) there was no open framework to simulate and evaluate the already proposed prefetching techniques; ii) no uniform selection of the performance indexes to be maximized, or even their definition; iii) no comparative studies of prediction algorithms taking into account the costs and benefits of web prefetching at the same time; and iv) the evaluation of techniques under very different or few significant workloads. During the research work, we have contributed to homogenizing the evaluation of prefetching performance by developing an open simulation framework that reproduces in detail all the aspects that impact on prefetching performance. In addition, prefetching performance metrics have been analyzed in order to clarify their definition and detect the most meaningful from the user's point of view. We also proposed an evaluation methodology to consider the cost and the benefit of prefetching at the same time. Finally, the importance of using current workloads to evaluate prefetching techniques has been highlighted; otherwise wrong conclusions could be achieved. The potential benefits of each web prefetching architecture were analyzed, finding that collaborative predictors could reduce almost all the latency perceived by users. The first step to develop a collaborative predictor is to make predictions at the server, so this thesis is focused on an architecture with a server-located predictor. The environment conditions that can be found in the web are alsDoménech I De Soria, J. (2007). Evaluation, Analysis and adaptation of web prefetching techniques in current web [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1841Palanci

    Techniques of data prefetching, replication, and consistency in the Internet

    Get PDF
    Internet has become a major infrastructure for information sharing in our daily life, and indispensable to critical and large applications in industry, government, business, and education. Internet bandwidth (or the network speed to transfer data) has been dramatically increased, however, the latency time (or the delay to physically access data) has been reduced in a much slower pace. The rich bandwidth and lagging latency can be effectively coped with in Internet systems by three data management techniques: caching, replication, and prefetching. The focus of this dissertation is to address the latency problem in Internet by utilizing the rich bandwidth and large storage capacity for efficiently prefetching data to significantly improve the Web content caching performance, by proposing and implementing scalable data consistency maintenance methods to handle Internet Web address caching in distributed name systems (DNS), and to handle massive data replications in peer-to-peer systems. While the DNS service is critical in Internet, peer-to-peer data sharing is being accepted as an important activity in Internet.;We have made three contributions in developing prefetching techniques. First, we have proposed an efficient data structure for maintaining Web access information, called popularity-based Prediction by Partial Matching (PB-PPM), where data are placed and replaced guided by popularity information of Web accesses, thus only important and useful information is stored. PB-PPM greatly reduces the required storage space, and improves the prediction accuracy. Second, a major weakness in existing Web servers is that prefetching activities are scheduled independently of dynamically changing server workloads. Without a proper control and coordination between the two kinds of activities, prefetching can negatively affect the Web services and degrade the Web access performance. to address this problem, we have developed a queuing model to characterize the interactions. Guided by the model, we have designed a coordination scheme that dynamically adjusts the prefetching aggressiveness in Web Servers. This scheme not only prevents the Web servers from being overloaded, but it can also minimize the average server response time. Finally, we have proposed a scheme that effectively coordinates the sharing of access information for both proxy and Web servers. With the support of this scheme, the accuracy of prefetching decisions is significantly improved.;Regarding data consistency support for Internet caching and data replications, we have conducted three significant studies. First, we have developed a consistency support technique to maintain the data consistency among the replicas in structured P2P networks. Based on Pastry, an existing and popular P2P system, we have implemented this scheme, and show that it can effectively maintain consistency while prevent hot-spot and node-failure problems. Second, we have designed and implemented a DNS cache update protocol, called DNScup, to provide strong consistency for domain/IP mappings. Finally, we have developed a dynamic lease scheme to timely update the replicas in Internet
    • …
    corecore