2,476 research outputs found

    RESEARCH ISSUES CONCERNING ALGORITHMS USED FOR OPTIMIZING THE DATA MINING PROCESS

    Get PDF
    In this paper, we depict some of the most widely used data mining algorithms that have an overwhelming utility and influence in the research community. A data mining algorithm can be regarded as a tool that creates a data mining model. After analyzing a set of data, an algorithm searches for specific trends and patterns, then defines the parameters of the mining model based on the results of this analysis. The above defined parameters play a significant role in identifying and extracting actionable patterns and detailed statistics. The most important algorithms within this research refer to topics like clustering, classification, association analysis, statistical learning, link mining. In the following, after a brief description of each algorithm, we analyze its application potential and research issues concerning the optimization of the data mining process. After the presentation of the data mining algorithms, we will depict the most important data mining algorithms included in Microsoft and Oracle software products, useful suggestions and criteria in choosing the most recommended algorithm for solving a mentioned task, advantages offered by these software products.data mining optimization, data mining algorithms, software solutions

    Web Usage Mining with Evolutionary Extraction of Temporal Fuzzy Association Rules

    Get PDF
    In Web usage mining, fuzzy association rules that have a temporal property can provide useful knowledge about when associations occur. However, there is a problem with traditional temporal fuzzy association rule mining algorithms. Some rules occur at the intersection of fuzzy sets' boundaries where there is less support (lower membership), so the rules are lost. A genetic algorithm (GA)-based solution is described that uses the flexible nature of the 2-tuple linguistic representation to discover rules that occur at the intersection of fuzzy set boundaries. The GA-based approach is enhanced from previous work by including a graph representation and an improved fitness function. A comparison of the GA-based approach with a traditional approach on real-world Web log data discovered rules that were lost with the traditional approach. The GA-based approach is recommended as complementary to existing algorithms, because it discovers extra rules. (C) 2013 Elsevier B.V. All rights reserved

    A Tight Upper Bound on the Number of Candidate Patterns

    Full text link
    In the context of mining for frequent patterns using the standard levelwise algorithm, the following question arises: given the current level and the current set of frequent patterns, what is the maximal number of candidate patterns that can be generated on the next level? We answer this question by providing a tight upper bound, derived from a combinatorial result from the sixties by Kruskal and Katona. Our result is useful to reduce the number of database scans

    Bidirectional Growth based Mining and Cyclic Behaviour Analysis of Web Sequential Patterns

    Get PDF
    Web sequential patterns are important for analyzing and understanding users behaviour to improve the quality of service offered by the World Wide Web. Web Prefetching is one such technique that utilizes prefetching rules derived through Cyclic Model Analysis of the mined Web sequential patterns. The more accurate the prediction and more satisfying the results of prefetching if we use a highly efficient and scalable mining technique such as the Bidirectional Growth based Directed Acyclic Graph. In this paper, we propose a novel algorithm called Bidirectional Growth based mining Cyclic behavior Analysis of web sequential Patterns (BGCAP) that effectively combines these strategies to generate prefetching rules in the form of 2-sequence patterns with Periodicity and threshold of Cyclic Behaviour that can be utilized to effectively prefetch Web pages, thus reducing the users perceived latency. As BGCAP is based on Bidirectional pattern growth, it performs only (log n+1) levels of recursion for mining n Web sequential patterns. Our experimental results show that prefetching rules generated using BGCAP is 5-10 percent faster for different data sizes and 10-15% faster for a fixed data size than TD-Mine. In addition, BGCAP generates about 5-15 percent more prefetching rules than TD-Mine.Comment: 19 page

    Mining of uncertain Web log sequences with access history probabilities

    Get PDF
    An uncertain data sequence is a sequence of data that exist with some level of doubt or probability. Each data item in the uncertain sequence is represented with a label and probability values, referred to as existential probability, ranging from 0 to 1. Existing algorithms are either unsuitable or inefficient for discovering frequent sequences in uncertain data. This thesis presents mining of uncertain Web sequences with a method that combines access history probabilities from several Web log sessions with features of the PLWAP web sequential miner. The method is Uncertain Position Coded Pre-order Linked Web Access Pattern (U-PLWAP) algorithm for mining frequent sequential patterns in uncertain web logs. While PLWAP only considers a session of weblogs, U-PLWAP takes more sessions of weblogs from which existential probabilities are generated. Experiments show that U-PLWAP is at least 100% faster than U-apriori, and 33% faster than UF-growth. The UF-growth algorithm also fails to take into consideration the order of the items, thereby making U-PLWAP a richer algorithm in terms of the information its result contains

    iWAP: ASingle Pass Approach for Web Access Sequential Pattern Mining

    Get PDF
    With the explosive growth of data availability on the World Wide Web, web usage mining becomes very essential for improving designs of websites, analyzing system performance as well as network communications, understanding user reaction, motivation and building adaptive websites. Web Access Pattern mining (WAP-mine) is a sequential pattern mining technique for discovering frequent web log access sequences. It first stores the frequent part of original web access sequence database on a prefix tree called WAP-tree and mines the frequent sequences from that tree according to a user given minimum support threshold. Therefore, this method is not applicable for incremental and interactive mining. In this paper, we propose an algorithm, improved Web Access Pattern (iWAP) mining, to find web access patterns from web logs more efficiently than the WAP-mine algorithm. Our proposed approach can discover all web access sequential patterns with a single pass of web log databases. Moreover, it is applicable for interactive and incremental mining which are not provided by the earlier one. The experimental and performance studies show that the proposed algorithm is in general an order of magnitude faster than the existing WAP-mine algorithm
    • ā€¦
    corecore