9,145 research outputs found

    Analysis of Neighbourhoods in Multi-layered Dynamic Social Networks

    Full text link
    Social networks existing among employees, customers or users of various IT systems have become one of the research areas of growing importance. A social network consists of nodes - social entities and edges linking pairs of nodes. In regular, one-layered social networks, two nodes - i.e. people are connected with a single edge whereas in the multi-layered social networks, there may be many links of different types for a pair of nodes. Nowadays data about people and their interactions, which exists in all social media, provides information about many different types of relationships within one network. Analysing this data one can obtain knowledge not only about the structure and characteristics of the network but also gain understanding about semantic of human relations. Are they direct or not? Do people tend to sustain single or multiple relations with a given person? What types of communication is the most important for them? Answers to these and more questions enable us to draw conclusions about semantic of human interactions. Unfortunately, most of the methods used for social network analysis (SNA) may be applied only to one-layered social networks. Thus, some new structural measures for multi-layered social networks are proposed in the paper, in particular: cross-layer clustering coefficient, cross-layer degree centrality and various versions of multi-layered degree centralities. Authors also investigated the dynamics of multi-layered neighbourhood for five different layers within the social network. The evaluation of the presented concepts on the real-world dataset is presented. The measures proposed in the paper may directly be used to various methods for collective classification, in which nodes are assigned to labels according to their structural input features.Comment: 16 pages, International Journal of Computational Intelligence System

    Fast Shortest Path Distance Estimation in Large Networks

    Full text link
    We study the problem of preprocessing a large graph so that point-to-point shortest-path queries can be answered very fast. Computing shortest paths is a well studied problem, but exact algorithms do not scale to huge graphs encountered on the web, social networks, and other applications. In this paper we focus on approximate methods for distance estimation, in particular using landmark-based distance indexing. This approach involves selecting a subset of nodes as landmarks and computing (offline) the distances from each node in the graph to those landmarks. At runtime, when the distance between a pair of nodes is needed, we can estimate it quickly by combining the precomputed distances of the two nodes to the landmarks. We prove that selecting the optimal set of landmarks is an NP-hard problem, and thus heuristic solutions need to be employed. Given a budget of memory for the index, which translates directly into a budget of landmarks, different landmark selection strategies can yield dramatically different results in terms of accuracy. A number of simple methods that scale well to large graphs are therefore developed and experimentally compared. The simplest methods choose central nodes of the graph, while the more elaborate ones select central nodes that are also far away from one another. The efficiency of the suggested techniques is tested experimentally using five different real world graphs with millions of edges; for a given accuracy, they require as much as 250 times less space than the current approach in the literature which considers selecting landmarks at random. Finally, we study applications of our method in two problems arising naturally in large-scale networks, namely, social search and community detection.Yahoo! Research (internship

    OnionBots: Subverting Privacy Infrastructure for Cyber Attacks

    Full text link
    Over the last decade botnets survived by adopting a sequence of increasingly sophisticated strategies to evade detection and take overs, and to monetize their infrastructure. At the same time, the success of privacy infrastructures such as Tor opened the door to illegal activities, including botnets, ransomware, and a marketplace for drugs and contraband. We contend that the next waves of botnets will extensively subvert privacy infrastructure and cryptographic mechanisms. In this work we propose to preemptively investigate the design and mitigation of such botnets. We first, introduce OnionBots, what we believe will be the next generation of resilient, stealthy botnets. OnionBots use privacy infrastructures for cyber attacks by completely decoupling their operation from the infected host IP address and by carrying traffic that does not leak information about its source, destination, and nature. Such bots live symbiotically within the privacy infrastructures to evade detection, measurement, scale estimation, observation, and in general all IP-based current mitigation techniques. Furthermore, we show that with an adequate self-healing network maintenance scheme, that is simple to implement, OnionBots achieve a low diameter and a low degree and are robust to partitioning under node deletions. We developed a mitigation technique, called SOAP, that neutralizes the nodes of the basic OnionBots. We also outline and discuss a set of techniques that can enable subsequent waves of Super OnionBots. In light of the potential of such botnets, we believe that the research community should proactively develop detection and mitigation methods to thwart OnionBots, potentially making adjustments to privacy infrastructure.Comment: 12 pages, 8 figure

    Modeling Paying Behavior in Game Social Networks

    Get PDF
    Online gaming is one of the largest industries on the Internet, generating tens of billions of dollars in revenues annually. One core problem in online game is to find and convert free users into paying customers, which is of great importance for the sustainable development of almost all online games. Although much research has been conducted, there are still several challenges that remain largely unsolved: What are the fundamental factors that trigger the users to pay? How does users? paying behavior influence each other in the game social network? How to design a prediction model to recognize those potential users who are likely to pay? In this paper, employing two large online games as the basis, we study how a user becomes a new paying user in the games. In particular, we examine how users' paying behavior influences each other in the game social network. We study this problem from various sociological perspectives including strong/weak ties, social structural diversity and social influence. Based on the discovered patterns, we propose a learning framework to predict potential new payers. The framework can learn a model using features associated with users and then use the social relationships between users to refine the learned model. We test the proposed framework using nearly 50 billion user activities from two real games. Our experiments show that the proposed framework significantly improves the prediction accuracy by up to 3-11% compared to several alternative methods. The study also unveils several intriguing social phenomena from the data. For example, influence indeed exists among users for the paying behavior. The likelihood of a user becoming a new paying user is 5 times higher than chance when he has 5 paying neighbors of strong tie. We have deployed the proposed algorithm into the game, and the Lift_Ratio has been improved up to 196% compared to the prior strategy

    Theories for influencer identification in complex networks

    Full text link
    In social and biological systems, the structural heterogeneity of interaction networks gives rise to the emergence of a small set of influential nodes, or influencers, in a series of dynamical processes. Although much smaller than the entire network, these influencers were observed to be able to shape the collective dynamics of large populations in different contexts. As such, the successful identification of influencers should have profound implications in various real-world spreading dynamics such as viral marketing, epidemic outbreaks and cascading failure. In this chapter, we first summarize the centrality-based approach in finding single influencers in complex networks, and then discuss the more complicated problem of locating multiple influencers from a collective point of view. Progress rooted in collective influence theory, belief-propagation and computer science will be presented. Finally, we present some applications of influencer identification in diverse real-world systems, including online social platforms, scientific publication, brain networks and socioeconomic systems.Comment: 24 pages, 6 figure
    • …
    corecore