1,847 research outputs found

    Taste and the algorithm

    Get PDF
    Today, a consistent part of our everyday interaction with art and aesthetic artefacts occurs through digital media, and our preferences and choices are systematically tracked and analyzed by algorithms in ways that are far from transparent. Our consumption is constantly documented, and then, we are fed back through tailored information. We are therefore witnessing the emergence of a complex interrelation between our aesthetic choices, their digital elaboration, and also the production of content and the dynamics of creative processes. All are involved in a process of mutual influences, and are partially determined by the invisible guiding hand of algorithms. With regard to this topic, this paper will introduce some key issues concerning the role of algorithms in aesthetic domains, such as taste detection and formation, cultural consumption and production, and showing how aesthetics can contribute to the ongoing debate about the impact of today’s “algorithmic culture”

    SoK: Decentralized Finance (DeFi) Attacks

    Full text link
    Within just four years, the blockchain-based Decentralized Finance (DeFi) ecosystem has accumulated a peak total value locked (TVL) of more than 253 billion USD. This surge in DeFi's popularity has, unfortunately, been accompanied by many impactful incidents. According to our data, users, liquidity providers, speculators, and protocol operators suffered a total loss of at least 3.24 billion USD from Apr 30, 2018 to Apr 30, 2022. Given the blockchain's transparency and increasing incident frequency, two questions arise: How can we systematically measure, evaluate, and compare DeFi incidents? How can we learn from past attacks to strengthen DeFi security? In this paper, we introduce a common reference frame to systematically evaluate and compare DeFi incidents, including both attacks and accidents. We investigate 77 academic papers, 30 audit reports, and 181 real-world incidents. Our data reveals several gaps between academia and the practitioners' community. For example, few academic papers address "price oracle attacks" and "permissonless interactions", while our data suggests that they are the two most frequent incident types (15% and 10.5% correspondingly). We also investigate potential defenses, and find that: (i) 103 (56%) of the attacks are not executed atomically, granting a rescue time frame for defenders; (ii) SoTA bytecode similarity analysis can at least detect 31 vulnerable/23 adversarial contracts; and (iii) 33 (15.3%) of the adversaries leak potentially identifiable information by interacting with centralized exchanges

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text

    Blockchain Copyright Exchange – A Prototype

    Get PDF
    The copyright market for creative works such as music and movies traditionally involves a complex web of licensing transactions and exorbitant transaction costs. Out of every dollar that consumers pay, an artist who writes, performs, and produces her own work may receive less than fifteen cents while the rest are diverted to cover the costs of financing new production, marketing new works, and distributing royalties. Although artists are typically scheduled to receive royalties on a quarterly basis, a payment may lag as far as two years after users paid. Furthermore, if a collecting society is unable to identify the rightful owner for a royalty payment, it routinely allocates the royalty among its existing members. This Article proposes a blockchain copyright exchange (“BCE”) that dramatically improves efficiency and accuracy in copyright transactions by hardcoding thousands of copyright rules and license terms in blockchain-based smart contracts. First, BCE allows artists to earn a royalty per stream potentially sixteen times larger than Spotify offers and eighty times larger than YouTube offers. Artists receive payments at a speed millions of times faster, in a matter of seconds instead of months, with zero administrative charges and zero dollars falling through the cracks. Second, BCE allows artists to launch crowdfunding campaigns inviting fans to securely finance creative works in return for a share of copyright ownership in the form of a non-fungible token (“NFT”) or a fungible token (“FT”). It significantly diversifies the investment risks for artists and labels alike. Third, BCE cultivates a healthy ecosystem among artists and users by mobilizing users to mine BCE tokens through distribution and promotion of licensed works. These powerful incentives, together with BCE’s innovative enforcement mechanisms, may effectively eliminate the breeding ground for copyright piracy

    Achieving Autonomic Web Service Compositions with Models at Runtime

    Full text link
    Over the last years, Web services have become increasingly popular. It is because they allow businesses to share data and business process (BP) logic through a programmatic interface across networks. In order to reach the full potential of Web services, they can be combined to achieve specifi c functionalities. Web services run in complex contexts where arising events may compromise the quality of the system (e.g. a sudden security attack). As a result, it is desirable to count on mechanisms to adapt Web service compositions (or simply called service compositions) according to problematic events in the context. Since critical systems may require prompt responses, manual adaptations are unfeasible in large and intricate service compositions. Thus, it is suitable to have autonomic mechanisms to guide their self-adaptation. One way to achieve this is by implementing variability constructs at the language level. However, this approach may become tedious, difficult to manage, and error-prone as the number of con figurations for the service composition grows. The goal of this thesis is to provide a model-driven framework to guide autonomic adjustments of context-aware service compositions. This framework spans over design time and runtime to face arising known and unknown context events (i.e., foreseen and unforeseen at design time) in the close and open worlds respectively. At design time, we propose a methodology for creating the models that guide autonomic changes. Since Service-Oriented Architecture (SOA) lacks support for systematic reuse of service operations, we represent service operations as Software Product Line (SPL) features in a variability model. As a result, our approach can support the construction of service composition families in mass production-environments. In order to reach optimum adaptations, the variability model and its possible con figurations are verifi ed at design time using Constraint Programming (CP). At runtime, when problematic events arise in the context, the variability model is leveraged for guiding autonomic changes of the service composition. The activation and deactivation of features in the variability model result in changes in a composition model that abstracts the underlying service composition. Changes in the variability model are refl ected into the service composition by adding or removing fragments of Business Process Execution Language (WS-BPEL) code, which are deployed at runtime. Model-driven strategies guide the safe migration of running service composition instances. Under the closed-world assumption, the possible context events are fully known at design time. These events will eventually trigger the dynamic adaptation of the service composition. Nevertheless, it is diffi cult to foresee all the possible situations arising in uncertain contexts where service compositions run. Therefore, we extend our framework to cover the dynamic evolution of service compositions to deal with unexpected events in the open world. If model adaptations cannot solve uncertainty, the supporting models self-evolve according to abstract tactics that preserve expected requirements.Alférez Salinas, GH. (2013). Achieving Autonomic Web Service Compositions with Models at Runtime [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34672TESI

    Role of homeodomain leucine zipper (HD-Zip) iv transcription factors in plant development and plant protection from deleterious environmental factors

    Get PDF
    Homeobox genes comprise an important group of genes that are responsible for regulation of developmental processes. These genes determine cell differentiation and cell fate in all eukaryotic organisms, starting from the early stages of embryo development. Homeodomain leucine zipper (HD-Zip) transcription factors are unique to the plant kingdom. Members of the HD-Zip IV subfamily have a complex domain topology and can bind several cis-elements with overlapping sequences. Many of the reported HD-Zip IV genes were shown to be specifically or preferentially expressed in plant epidermal or sub-epidermal cells. HD-Zip IV TFs were found to be associated with differentiation and maintenance of outer cell layers, and regulation of lipid biosynthesis and transport. Insights about the role of these proteins in plant cuticle formation, and hence their possible involvement in plant protection from pathogens and abiotic stresses has just started to emerge. These roles make HD-Zip IV proteins an attractive tool for genetic engineering of crop plants. To this end, there is a need for in-depth studies to further clarify the function of each HD-Zip IV subfamily member in commercially important plant species.William Chew, Maria Hrmova and Sergiy Lopat
    corecore