26 research outputs found

    A Spatial Data Model for Moving Object Databases

    Get PDF

    Knowledge discovery from trajectories

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesAs a newly proliferating study area, knowledge discovery from trajectories has attracted more and more researchers from different background. However, there is, until now, no theoretical framework for researchers gaining a systematic view of the researches going on. The complexity of spatial and temporal information along with their combination is producing numerous spatio-temporal patterns. In addition, it is very probable that a pattern may have different definition and mining methodology for researchers from different background, such as Geographic Information Science, Data Mining, Database, and Computational Geometry. How to systematically define these patterns, so that the whole community can make better use of previous research? This paper is trying to tackle with this challenge by three steps. First, the input trajectory data is classified; second, taxonomy of spatio-temporal patterns is developed from data mining point of view; lastly, the spatio-temporal patterns appeared on the previous publications are discussed and put into the theoretical framework. In this way, researchers can easily find needed methodology to mining specific pattern in this framework; also the algorithms needing to be developed can be identified for further research. Under the guidance of this framework, an application to a real data set from Starkey Project is performed. Two questions are answers by applying data mining algorithms. First is where the elks would like to stay in the whole range, and the second is whether there are corridors among these regions of interest

    Reporting flock patterns

    Get PDF
    Data representing moving objects is rapidly getting more available, especially in the area of wildlife GPS tracking. It is a central belief that information is hidden in large data sets in the form of interesting patterns. One of the most common spatio-temporal patterns sought after is flocks. A flock is a large enough subset of objects moving along paths close to each other for a certain pre-defined time. We give a new definition that we argue is more realistic than the previous ones, and by the use of techniques from computational geometry we present fast algorithms to detect and report flocks. The algorithms are analysed both theoretically and experimentally

    NEW METHODS FOR MINING SEQUENTIAL AND TIME SERIES DATA

    Get PDF
    Data mining is the process of extracting knowledge from large amounts of data. It covers a variety of techniques aimed at discovering diverse types of patterns on the basis of the requirements of the domain. These techniques include association rules mining, classification, cluster analysis and outlier detection. The availability of applications that produce massive amounts of spatial, spatio-temporal (ST) and time series data (TSD) is the rationale for developing specialized techniques to excavate such data. In spatial data mining, the spatial co-location rule problem is different from the association rule problem, since there is no natural notion of transactions in spatial datasets that are embedded in continuous geographic space. Therefore, we have proposed an efficient algorithm (GridClique) to mine interesting spatial co-location patterns (maximal cliques). These patterns are used as the raw transactions for an association rule mining technique to discover complex co-location rules. Our proposal includes certain types of complex relationships – especially negative relationships – in the patterns. The relationships can be obtained from only the maximal clique patterns, which have never been used until now. Our approach is applied on a well-known astronomy dataset obtained from the Sloan Digital Sky Survey (SDSS). ST data is continuously collected and made accessible in the public domain. We present an approach to mine and query large ST data with the aim of finding interesting patterns and understanding the underlying process of data generation. An important class of queries is based on the flock pattern. A flock is a large subset of objects moving along paths close to each other for a predefined time. One approach to processing a “flock query” is to map ST data into high-dimensional space and to reduce the query to a sequence of standard range queries that can be answered using a spatial indexing structure; however, the performance of spatial indexing structures rapidly deteriorates in high-dimensional space. This thesis sets out a preprocessing strategy that uses a random projection to reduce the dimensionality of the transformed space. We use probabilistic arguments to prove the accuracy of the projection and to present experimental results that show the possibility of managing the curse of dimensionality in a ST setting by combining random projections with traditional data structures. In time series data mining, we devised a new space-efficient algorithm (SparseDTW) to compute the dynamic time warping (DTW) distance between two time series, which always yields the optimal result. This is in contrast to other approaches which typically sacrifice optimality to attain space efficiency. The main idea behind our approach is to dynamically exploit the existence of similarity and/or correlation between the time series: the more the similarity between the time series, the less space required to compute the DTW between them. Other techniques for speeding up DTW, impose a priori constraints and do not exploit similarity characteristics that may be present in the data. Our experiments demonstrate that SparseDTW outperforms these approaches. We discover an interesting pattern by applying SparseDTW algorithm: “pairs trading” in a large stock-market dataset, of the index daily prices from the Australian stock exchange (ASX) from 1980 to 2002

    Personalized location prediction for group travellers from spatial-temporal trajectories

    Get PDF
    In recent years, research on location predictions by mining trajectories of users has attracted a lot of attentions. Existing studies on this topic mostly focus on individual movements, considering the trajectories as solo movements. However, a user usually does not visit locations just for the personal interest. The preference of a travel group has significant impacts on the places they have visited. In this paper, we propose a novel personalized location prediction approach which further takes into account users’ travel group type. To achieve this goal, we propose a new group pattern discovery approach to extract the travel groups from spatial-temporal trajectories of users. Type of the discovered groups, then, are identified through utilizing the profile information of the group members. The core idea underlying our proposal is the discovery of significant movement patterns of users to capture frequent movements by considering the group types. Finally, the problem of location prediction is formulated as an estimation of the probability of a given user visiting a given location based on his/her current movement and his/her group type. To the best of our knowledge, this is the first work on location prediction based on trajectory pattern mining that investigates the influence of travel group type. By means of a comprehensive evaluation using various datasets, we show that our proposed location prediction framework achieves significantly higher performance than previous location prediction methods

    Discovery of Spatiotemporal Event Sequences

    Get PDF
    Finding frequent patterns plays a vital role in many analytics tasks such as finding itemsets, associations, correlations, and sequences. In recent decades, spatiotemporal frequent pattern mining has emerged with the main goal focused on developing data-driven analysis frameworks for understanding underlying spatial and temporal characteristics in massive datasets. In this thesis, we will focus on discovering spatiotemporal event sequences from large-scale region trajectory datasetes with event annotations. Spatiotemporal event sequences are the series of event types whose trajectory-based instances follow each other in spatiotemporal context. We introduce new data models for storing and processing evolving region trajectories, provide a novel framework for modeling spatiotemporal follow relationships, and present novel spatiotemporal event sequence mining algorithms

    Periodic pattern mining from spatio-temporal trajectory data

    Get PDF
    Rapid development in GPS tracking techniques produces a large number of spatio-temporal trajectory data. The analysis of these data provides us with a new opportunity to discover useful behavioural patterns. Spatio-temporal periodic pattern mining is employed to find temporal regularities for interesting places. Mining periodic patterns from spatio-temporal trajectories can reveal useful, important and valuable information about people's regular and recurrent movements and behaviours. Previous studies have been proposed to extract people's regular and repeating movement behavior from spatio-temporal trajectories. These previous approaches can target three following issues, (1) long individual trajectory; (2) spatial fuzziness; and (3) temporal fuzziness. First, periodic pattern mining is different to other pattern mining, such as association rule ming and sequential pattern mining, periodic pattern mining requires a very long trajectory from an individual so that the regular period can be extracted from this long single trajectory, for example, one month or one year period. Second, spatial fuzziness shows although a moving object can regularly move along the similar route, it is impossible for it to appear at the exactly same location. For instance, Bob goes to work everyday, and although he can follow a similar path from home to his workplace, the same location cannot be repeated across different days. Third, temporal fuzziness shows that periodicity is complicated including partial time span and multiple interleaving periods. In reality, the period is partial, it is highly impossible to occur through the whole movement of the object. Alternatively, the moving object has only a few periods, such as a daily period for work, or yearly period for holidays. However, it is insufficient to find effective periodic patterns considering these three issues only. This thesis aims to develop a new framework to extract more effective, understandable and meaningful periodic patterns by taking more features of spatio-temporal trajectories into account. The first feature is trajectory sequence, GPS trajectory data is temporally ordered sequences of geolocation which can be represented as consecutive trajectory segments, where each entry in each trajectory segment is closely related to the previous sampled point (trajectory node) and the latter one, rather than being isolated. Existing approaches disregard the important sequential nature of trajectory. Furthermore, they introduce both unwanted false positive reference spots and false negative reference spots. The second feature is spatial and temporal aspects. GPS trajectory data can be presented as triple data (x; y; t), x and y represent longitude and latitude respectively whilst t shows corresponding time in this location. Obviously, spatial and temporal aspects are two key factors. Existing methods do not consider these two aspects together in periodic pattern mining. Irregular time interval is the third feature of spatio-temporal trajectory. In reality, due to weather conditions, device malfunctions, or battery issues, the trajectory data are not always regularly sampled. Existing algorithms cannot deal with this issue but instead require a computationally expensive trajectory interpolation process, or it is assumed that trajectory is with regular time interval. The fourth feature is hierarchy of space. Hierarchy is an inherent property of spatial data that can be expressed in different levels, such as a country includes many states, a shopping mall is comprised of many shops. Hierarchy of space can find more hidden and valuable periodic patterns. Existing studies do not consider this inherent property of trajectory. Hidden background semantic information is the final feature. Aspatial semantic information is one of important features in spatio-temporal data, and it is embedded into the trajectory data. If the background semantic information is considered, more meaningful, understandable and useful periodic patterns can be extracted. However, existing methods do not consider the geographical information underlying trajectories. In addition, at times we are interested in finding periodic patterns among trajectory paths rather than trajectory nodes for different applications. This means periodic patterns should be identified and detected against trajectory paths rather than trajectory nodes for some applications. Existing approaches for periodic pattern mining focus on trajectories nodes rather than paths. To sum up, the aim of this thesis is to investigate solutions to these problems in periodic pattern mining in order to extract more meaningful, understandable periodic patterns. Each of three chapters addresses a different problem and then proposes adequate solutions to problems currently not addressed in existing studies. Finally, this thesis proposes a new framework to address all problems. First, we investigated a path-based solution which can target trajectory sequence and spatio-temporal aspects. We proposed an algorithm called Traclus (spatio-temporal) which can take spatial and temporal aspects into account at the same time instead of only considering spatial aspect. The result indicated our method produced more effective periodic patterns based on trajectory paths than existing node-based methods using two real-world trajectories. In order to consider hierarchy of space, we investigated existing hierarchical clustering approaches to obtain hierarchical reference spots (trajectory paths) for periodic pattern mining. HDBSCAN is an incremental version of DBSCAN which is able to handle clusters with different densities to generate a hierarchical clustering result using the single-linkage method, and then it automatically extracts clusters from a hierarchical tree. Thus, we modified traditional clustering method DBSCAN in Traclus (spatio-temporal) to HDBSCAN for extraction of hierarchical reference spots. The result is convincing, and reveals more periodic patterns than those of existing methods. Second, we introduced a stop/move method to annotate each spatio-temporal entry with a semantic label, such as restaurant, university and hospital. This method can enrich a trajectory with background semantic information so that we can easily infer people's repeating behaviors. In addition, existing methods use interpolation to make trajectory regular and then apply Fourier transform and autocorrelation to automatically detect period for each reference spot. An increasing number of trajectory nodes leads to an exponential increase of running time. Thus, we employed Lomb-Scargle periodogram to detect period for each reference spot based on raw trajectory without requiring any interpolation method. The results showed our method outperformed existing approaches on effectiveness and efficiency based on two real datasets. For hierarchical aspect, we extended previous work to find hierarchical semantic periodic patterns by applying HDBSCAN. The results were promising. Third, we apply our methodology to a case study, which reveals many interesting medical periodic patterns. These patterns can effectively explore human movement behaviors for positive medical outcomes. To sum up, this research proposed a new framework to gradually target the problems that existing methods cannot handle. These include: how to consider trajectory sequence, how to consider spatial temporal aspects together, how to deal with trajectory with irregular time interval, how to consider hierarchy of space and how to extract semantic information behind trajectory. After addressing all these problems, the experimental results demonstrate that our method can find more understandable, meaningful and effective periodic patterns than existing approaches

    Latitude, longitude, and beyond:mining mobile objects' behavior

    Get PDF
    Rapid advancements in Micro-Electro-Mechanical Systems (MEMS), and wireless communications, have resulted in a surge in data generation. Mobility data is one of the various forms of data, which are ubiquitously collected by different location sensing devices. Extensive knowledge about the behavior of humans and wildlife is buried in raw mobility data. This knowledge can be used for realizing numerous viable applications ranging from wildlife movement analysis, to various location-based recommendation systems, urban planning, and disaster relief. With respect to what mentioned above, in this thesis, we mainly focus on providing data analytics for understanding the behavior and interaction of mobile entities (humans and animals). To this end, the main research question to be addressed is: How can behaviors and interactions of mobile entities be determined from mobility data acquired by (mobile) wireless sensor nodes in an accurate and efficient manner? To answer the above-mentioned question, both application requirements and technological constraints are considered in this thesis. On the one hand, applications requirements call for accurate data analytics to uncover hidden information about individual behavior and social interaction of mobile entities, and to deal with the uncertainties in mobility data. Technological constraints, on the other hand, require these data analytics to be efficient in terms of their energy consumption and to have low memory footprint, and processing complexity
    corecore