2,876 research outputs found

    Moving Object Trajectories Meta-Model And Spatio-Temporal Queries

    Full text link
    In this paper, a general moving object trajectories framework is put forward to allow independent applications processing trajectories data benefit from a high level of interoperability, information sharing as well as an efficient answer for a wide range of complex trajectory queries. Our proposed meta-model is based on ontology and event approach, incorporates existing presentations of trajectory and integrates new patterns like space-time path to describe activities in geographical space-time. We introduce recursive Region of Interest concepts and deal mobile objects trajectories with diverse spatio-temporal sampling protocols and different sensors available that traditional data model alone are incapable for this purpose.Comment: International Journal of Database Management Systems (IJDMS) Vol.4, No.2, April 201

    Trajectory Data Analysis in Support of Understanding Movement Patterns: A Data Mining Approach

    Get PDF
    Recent developments in wireless technology, mobility and networking infrastructures increased the amounts of data being captured every second. Data captured from the digital traces of moving objects and devices is called trajectory data. With the increasing volume of spatiotemporal trajectories, constructive and meaningful knowledge needs to be extracted. In this paper, a conceptual framework is proposed to apply data mining techniques on trajectories and semantically enrich the extracted patterns. A design science research approach is followed, where the framework is tested and evaluated using a prototypical instantiation, built to support decisions in the context of the Egyptian tourism industry. By applying association rule mining, the revealed time-stamped frequently visited regions of interest (ROI) patterns show that specific semantic annotations are required at early stages in the process and on lower levels of detail, refuting the presumption of cross-application usable patterns

    How you move reveals who you are: understanding human behavior by analyzing trajectory data

    Get PDF
    The widespread use of mobile devices is producing a huge amount of trajectory data, making the discovery of movement patterns possible, which are crucial for understanding human behavior. Significant advances have been made with regard to knowledge discovery, but the process now needs to be extended bearing in mind the emerging field of behavior informatics. This paper describes the formalization of a semantic-enriched KDD process for supporting meaningful pattern interpretations of human behavior. Our approach is based on the integration of inductive reasoning (movement pattern discovery) and deductive reasoning (human behavior inference). We describe the implemented Athena system, which supports such a process, along with the experimental results on two different application domains related to traffic and recreation management

    A Conceptual View on Trajectories

    Get PDF
    Analysis of trajectory data is the key to a growing number of applications aiming at global understanding and management of complex phenomena that involve moving objects (e.g. worldwide courier distribution, city traffic management, bird migration monitoring). Current DBMS support for such data is limited to the ability to store and query raw movement (i.e. the spatio-temporal position of an object). This paper explores how conceptual modeling could provide applications with direct support of trajectories (i.e. movement data that is structured into countable semantic units) as a first class concept. A specific concern is to allow enriching trajectories with semantic annotations allowing users to attach semantic data to specific parts of the trajectory. Building on a preliminary requirement analysis and an application example, the paper proposes two modeling approaches, one based on a design pattern, the other based on dedicated data types, and illustrates their differences in terms of implementation in an extended-relational context
    • …
    corecore