142,240 research outputs found

    Node similarity as a basic principle behind connectivity in complex networks

    Full text link
    How are people linked in a highly connected society? Since in many networks a power-law (scale-free) node-degree distribution can be observed, power-law might be seen as a universal characteristics of networks. But this study of communication in the Flickr social online network reveals that power-law node-degree distributions are restricted to only sparsely connected networks. More densely connected networks, by contrast, show an increasing divergence from power-law. This work shows that this observation is consistent with the classic idea from social sciences that similarity is the driving factor behind communication in social networks. The strong relation between communication strength and node similarity could be confirmed by analyzing the Flickr network. It also is shown that node similarity as a network formation model can reproduce the characteristics of different network densities and hence can be used as a model for describing the topological transition from weakly to strongly connected societies.Comment: 6 pages in Journal of Data Mining & Digital Humanities (2015) jdmdh:3

    git2net - Mining Time-Stamped Co-Editing Networks from Large git Repositories

    Full text link
    Data from software repositories have become an important foundation for the empirical study of software engineering processes. A recurring theme in the repository mining literature is the inference of developer networks capturing e.g. collaboration, coordination, or communication from the commit history of projects. Most of the studied networks are based on the co-authorship of software artefacts defined at the level of files, modules, or packages. While this approach has led to insights into the social aspects of software development, it neglects detailed information on code changes and code ownership, e.g. which exact lines of code have been authored by which developers, that is contained in the commit log of software projects. Addressing this issue, we introduce git2net, a scalable python software that facilitates the extraction of fine-grained co-editing networks in large git repositories. It uses text mining techniques to analyse the detailed history of textual modifications within files. This information allows us to construct directed, weighted, and time-stamped networks, where a link signifies that one developer has edited a block of source code originally written by another developer. Our tool is applied in case studies of an Open Source and a commercial software project. We argue that it opens up a massive new source of high-resolution data on human collaboration patterns.Comment: MSR 2019, 12 pages, 10 figure

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Mining Threat Intelligence about Open-Source Projects and Libraries from Code Repository Issues and Bug Reports

    Full text link
    Open-Source Projects and Libraries are being used in software development while also bearing multiple security vulnerabilities. This use of third party ecosystem creates a new kind of attack surface for a product in development. An intelligent attacker can attack a product by exploiting one of the vulnerabilities present in linked projects and libraries. In this paper, we mine threat intelligence about open source projects and libraries from bugs and issues reported on public code repositories. We also track library and project dependencies for installed software on a client machine. We represent and store this threat intelligence, along with the software dependencies in a security knowledge graph. Security analysts and developers can then query and receive alerts from the knowledge graph if any threat intelligence is found about linked libraries and projects, utilized in their products
    corecore