42,086 research outputs found

    Mining frequent sequential patterns in data streams using SSM-algorithm.

    Get PDF
    Frequent sequential mining is the process of discovering frequent sequential patterns in data sequences as found in applications like web log access sequences. In data stream applications, data arrive at high speed rates in a continuous flow. Data stream mining is an online process different from traditional mining. Traditional mining algorithms work on an entire static dataset in order to obtain results while data stream mining algorithms work with continuously arriving data streams. With rapid change in technology, there are many applications that take data as continuous streams. Examples include stock tickers, network traffic measurements, click stream data, data feeds from sensor networks, and telecom call records. Mining frequent sequential patterns on data stream applications contend with many challenges such as limited memory for unlimited data, inability of algorithms to scan infinitely flowing original dataset more than once and to deliver current and accurate result on demand. This thesis proposes SSM-Algorithm (sequential stream mining-algorithm) that delivers frequent sequential patterns in data streams. The concept of this work came from FP-Stream algorithm that delivers time sensitive frequent patterns. Proposed SSM-Algorithm outperforms FP-Stream algorithm by the use of a hash based and two efficient tree based data structures. All incoming streams are handled dynamically to improve memory usage. SSM-Algorithm maintains frequent sequences incrementally and delivers most current result on demand. The introduced algorithm can be deployed to analyze e-commerce data where the primary source of the data is click stream data. (Abstract shortened by UMI.)Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .M668. Source: Masters Abstracts International, Volume: 44-03, page: 1409. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    Mining High Utility Patterns Over Data Streams

    Get PDF
    Mining useful patterns from sequential data is a challenging topic in data mining. An important task for mining sequential data is sequential pattern mining, which discovers sequences of itemsets that frequently appear in a sequence database. In sequential pattern mining, the selection of sequences is generally based on the frequency/support framework. However, most of the patterns returned by sequential pattern mining may not be informative enough to business people and are not particularly related to a business objective. In view of this, high utility sequential pattern (HUSP) mining has emerged as a novel research topic in data mining recently. The main objective of HUSP mining is to extract valuable and useful sequential patterns from data by considering the utility of a pattern that captures a business objective (e.g., profit, users interest). In HUSP mining, the goal is to find sequences whose utility in the database is no less than a user-specified minimum utility threshold. Nowadays, many applications generate a huge volume of data in the form of data streams. A number of studies have been conducted on mining HUSPs, but they are mainly intended for non-streaming data and thus do not take data stream characteristics into consideration. Mining HUSP from such data poses many challenges. First, it is infeasible to keep all streaming data in the memory due to the high volume of data accumulated over time. Second, mining algorithms need to process the arriving data in real time with one scan of data. Third, depending on the minimum utility threshold value, the number of patterns returned by a HUSP mining algorithm can be large and overwhelms the user. In general, it is hard for the user to determine the value for the threshold. Thus, algorithms that can find the most valuable patterns (i.e., top-k high utility patterns) are more desirable. Mining the most valuable patterns is interesting in both static data and data streams. To address these research limitations and challenges, this dissertation proposes techniques and algorithms for mining high utility sequential patterns over data streams. We work on mining HUSPs over both a long portion of a data stream and a short period of time. We also work on how to efficiently identify the most significant high utility patterns (namely, the top-k high utility patterns) over data streams. In the first part, we explore a fundamental problem that is how the limited memory space can be well utilized to produce high quality HUSPs over the entire data stream. An approximation algorithm, called MAHUSP, is designed which employs memory adaptive mechanisms to use a bounded portion of memory, to efficiently discover HUSPs over the entire data streams. The second part of the dissertation presents a new sliding window-based algorithm to discover recent high utility sequential patterns over data streams. A novel data structure named HUSP-Tree is proposed to maintain the essential information for mining recenT HUSPs. An efficient and single-pass algorithm named HUSP-Stream is proposed to generate recent HUSPs from HUSP-Tree. The third part addresses the problem of top-k high utility pattern mining over data streams. Two novel methods, named T-HUDS and T-HUSP, for finding top-k high utility patterns over a data stream are proposed. T-HUDS discovers top-k high utility itemsets and T-HUSP discovers top-k high utility sequential patterns over a data stream. T-HUDS is based on a compressed tree structure, called HUDS-Tree, that can be used to efficiently find potential top-k high utility itemsets over data streams. T-HUSP incrementally maintains the content of top-k HUSPs in a data stream in a summary data structure, named TKList, and discovers top-k HUSPs efficiently. All of the algorithms are evaluated using both synthetic and real datasets. The performances, including the running time, memory consumption, precision, recall and Fmeasure, are compared. In order to show the effectiveness and efficiency of the proposed methods in reallife applications, the fourth part of this dissertation presents applications of one of the proposed methods (i.e., MAHUSP) to extract meaningful patterns from a real web clickstream dataset and a real biosequence dataset. The utility-based sequential patterns are compared with the patterns in the frequency/support framework. The results show that high utility sequential pattern mining provides meaningful patterns in real-life applications

    Incremental Mining of Frequent Serial Episodes Considering Multiple Occurrences

    Get PDF
    The need to analyze information from streams arises in a variety of applications. One of its fundamental research directions is to mine sequential patterns over data streams. Current studies mine series of items based on the presence of the pattern in transactions but pay no attention to the series of itemsets and their multiple occurrences. The pattern over a window of itemsets stream and their multiple occurrences, however, provides additional capability to recognize the essential characteristics of the patterns and the inter-relationships among them that are unidentifiable by the existing presence-based studies. In this paper, we study such a new sequential pattern mining problem and propose a corresponding sequential miner with novel strategies to prune the search space efficiently. Experiments on both real and synthetic data show the utility of our approach

    A Survey of Sequential Pattern Based E-Commerce Recommendation Systems

    Get PDF
    E-commerce recommendation systems usually deal with massive customer sequential databases, such as historical purchase or click stream sequences. Recommendation systems’ accuracy can be improved if complex sequential patterns of user purchase behavior are learned by integrating sequential patterns of customer clicks and/or purchases into the user–item rating matrix input of collaborative filtering. This review focuses on algorithms of existing E-commerce recommendation systems that are sequential pattern-based. It provides a comprehensive and comparative performance analysis of these systems, exposing their methodologies, achievements, limitations, and potential for solving more important problems in this domain. The review shows that integrating sequential pattern mining of historical purchase and/or click sequences into a user–item matrix for collaborative filtering can (i) improve recommendation accuracy, (ii) reduce user–item rating data sparsity, (iii) increase the novelty rate of recommendations, and (iv) improve the scalability of recommendation systems

    Pattern mining under different conditions

    Get PDF
    New requirements and demands on pattern mining arise in modern applications, which cannot be fulfilled using conventional methods. For example, in scientific research, scientists are more interested in unknown knowledge, which usually hides in significant but not frequent patterns. However, existing itemset mining algorithms are designed for very frequent patterns. Furthermore, scientists need to repeat an experiment many times to ensure reproducibility. A series of datasets are generated at once, waiting for clustering, which can contain an unknown number of clusters with various densities and shapes. Using existing clustering algorithms is time-consuming because parameter tuning is necessary for each dataset. Many scientific datasets are extremely noisy. They contain considerably more noises than in-cluster data points. Most existing clustering algorithms can only handle noises up to a moderate level. Temporal pattern mining is also important in scientific research. Existing temporal pattern mining algorithms only consider pointbased events. However, most activities in the real-world are interval-based with a starting and an ending timestamp. This thesis developed novel pattern mining algorithms for various data mining tasks under different conditions. The first part of this thesis investigates the problem of mining less frequent itemsets in transactional datasets. In contrast to existing frequent itemset mining algorithms, this part focus on itemsets that occurred not that frequent. Algorithms NIIMiner, RaCloMiner, and LSCMiner are proposed to identify such kind of itemsets efficiently. NIIMiner utilizes the negative itemset tree to extract all patterns that occurred less than a given support threshold in a top-down depth-first manner. RaCloMiner combines existing bottom-up frequent itemset mining algorithms with a top-down itemset mining algorithm to achieve a better performance in mining less frequent patterns. LSCMiner investigates the problem of mining less frequent closed patterns. The second part of this thesis studied the problem of interval-based temporal pattern mining in the stream environment. Interval-based temporal patterns are sequential patterns in which each event is aligned with a starting and ending temporal information. The ability to handle interval-based events and stream data is lacking in existing approaches. A novel intervalbased temporal pattern mining algorithm for stream data is described in this part. The last part of this thesis studies new problems in clustering on numeric datasets. The first problem tackled in this part is shape alternation adaptivity in clustering. In applications such as scientific data analysis, scientists need to deal with a series of datasets generated from one experiment. Cluster sizes and shapes are different in those datasets. A kNN density-based clustering algorithm, kadaClus, is proposed to provide the shape alternation adaptability so that users do not need to tune parameters for each dataset. The second problem studied in this part is clustering in an extremely noisy dataset. Many real-world datasets contain considerably more noises than in-cluster data points. A novel clustering algorithm, kenClus, is proposed to identify clusters in arbitrary shapes from extremely noisy datasets. Both clustering algorithms are kNN-based, which only require one parameter k. In each part, the efficiency and effectiveness of the presented techniques are thoroughly analyzed. Intensive experiments on synthetic and real-world datasets are conducted to show the benefits of the proposed algorithms over conventional approaches

    SGDP: A Stream-Graph Neural Network Based Data Prefetcher

    Full text link
    Data prefetching is important for storage system optimization and access performance improvement. Traditional prefetchers work well for mining access patterns of sequential logical block address (LBA) but cannot handle complex non-sequential patterns that commonly exist in real-world applications. The state-of-the-art (SOTA) learning-based prefetchers cover more LBA accesses. However, they do not adequately consider the spatial interdependencies between LBA deltas, which leads to limited performance and robustness. This paper proposes a novel Stream-Graph neural network-based Data Prefetcher (SGDP). Specifically, SGDP models LBA delta streams using a weighted directed graph structure to represent interactive relations among LBA deltas and further extracts hybrid features by graph neural networks for data prefetching. We conduct extensive experiments on eight real-world datasets. Empirical results verify that SGDP outperforms the SOTA methods in terms of the hit ratio by 6.21%, the effective prefetching ratio by 7.00%, and speeds up inference time by 3.13X on average. Besides, we generalize SGDP to different variants by different stream constructions, further expanding its application scenarios and demonstrating its robustness. SGDP offers a novel data prefetching solution and has been verified in commercial hybrid storage systems in the experimental phase. Our codes and appendix are available at https://github.com/yyysjz1997/SGDP/

    Incremental Mining of Frequent Serial Episodes Considering Multiple Occurrences

    Get PDF
    International audienceThe need to analyze information from streams arises in a variety of applications. One of its fundamental research directions is to mine sequential patterns over data streams. Current studies mine series of items based on the presence of the pattern in transactions but pay no attention to the series of itemsets and their multiple occurrences. The pattern over a window of itemsets stream and their multiple occurrences, however, provides additional capability to recognize the essential characteristics of the patterns and the inter-relationships among them that are unidentifiable by the existing presence-based studies. In this paper, we study such a new sequential pattern mining problem and propose a corresponding sequential miner with novel strategies to prune the search space efficiently. Experiments on both real and synthetic data show the utility of our approach
    corecore