4,780 research outputs found

    On the Effect of Semantically Enriched Context Models on Software Modularization

    Full text link
    Many of the existing approaches for program comprehension rely on the linguistic information found in source code, such as identifier names and comments. Semantic clustering is one such technique for modularization of the system that relies on the informal semantics of the program, encoded in the vocabulary used in the source code. Treating the source code as a collection of tokens loses the semantic information embedded within the identifiers. We try to overcome this problem by introducing context models for source code identifiers to obtain a semantic kernel, which can be used for both deriving the topics that run through the system as well as their clustering. In the first model, we abstract an identifier to its type representation and build on this notion of context to construct contextual vector representation of the source code. The second notion of context is defined based on the flow of data between identifiers to represent a module as a dependency graph where the nodes correspond to identifiers and the edges represent the data dependencies between pairs of identifiers. We have applied our approach to 10 medium-sized open source Java projects, and show that by introducing contexts for identifiers, the quality of the modularization of the software systems is improved. Both of the context models give results that are superior to the plain vector representation of documents. In some cases, the authoritativeness of decompositions is improved by 67%. Furthermore, a more detailed evaluation of our approach on JEdit, an open source editor, demonstrates that inferred topics through performing topic analysis on the contextual representations are more meaningful compared to the plain representation of the documents. The proposed approach in introducing a context model for source code identifiers paves the way for building tools that support developers in program comprehension tasks such as application and domain concept location, software modularization and topic analysis

    Text categorization and similarity analysis: similarity measure, architecture and design

    Get PDF
    This research looks at the most appropriate similarity measure to use for a document classification problem. The goal is to find a method that is accurate in finding both semantically and version related documents. A necessary requirement is that the method is efficient in its speed and disk usage. Simhash is found to be the measure best suited to the application and it can be combined with other software to increase the accuracy. Pingar have provided an API that will extract the entities from a document and create a taxonomy displaying the relationships and this extra information can be used to accurately classify input documents. Two algorithms are designed incorporating the Pingar API and then finally an efficient comparison algorithm is introduced to cut down the comparisons required

    A Trio Neural Model for Dynamic Entity Relatedness Ranking

    Full text link
    Measuring entity relatedness is a fundamental task for many natural language processing and information retrieval applications. Prior work often studies entity relatedness in static settings and an unsupervised manner. However, entities in real-world are often involved in many different relationships, consequently entity-relations are very dynamic over time. In this work, we propose a neural networkbased approach for dynamic entity relatedness, leveraging the collective attention as supervision. Our model is capable of learning rich and different entity representations in a joint framework. Through extensive experiments on large-scale datasets, we demonstrate that our method achieves better results than competitive baselines.Comment: In Proceedings of CoNLL 201

    Semantic TrueLearn: Using Semantic Knowledge Graphs in Recommendation Systems

    Get PDF
    In informational recommenders, many challenges arise from the need to handle the semantic and hierarchical structure between knowledge areas. This work aims to advance towards building a state-aware educational recommendation system that incorporates semantic relatedness between knowledge topics, propagating latent information across semantically related topics. We introduce a novel learner model that exploits this semantic relatedness between knowledge components in learning resources using the Wikipedia link graph, with the aim to better predict learner engagement and latent knowledge in a lifelong learning scenario. In this sense, Semantic TrueLearn builds a humanly intuitive knowledge representation while leveraging Bayesian machine learning to improve the predictive performance of the educational engagement. Our experiments with a large dataset demonstrate that this new semantic version of TrueLearn algorithm achieves statistically significant improvements in terms of predictive performance with a simple extension that adds semantic awareness to the model

    Entity Query Feature Expansion Using Knowledge Base Links

    Get PDF
    Recent advances in automatic entity linking and knowledge base construction have resulted in entity annotations for document and query collections. For example, annotations of entities from large general purpose knowledge bases, such as Freebase and the Google Knowledge Graph. Understanding how to leverage these entity annotations of text to improve ad hoc document retrieval is an open research area. Query expansion is a commonly used technique to improve retrieval effectiveness. Most previous query expansion approaches focus on text, mainly using unigram concepts. In this paper, we propose a new technique, called entity query feature expansion (EQFE) which enriches the query with features from entities and their links to knowledge bases, including structured attributes and text. We experiment using both explicit query entity annotations and latent entities. We evaluate our technique on TREC text collections automatically annotated with knowledge base entity links, including the Google Freebase Annotations (FACC1) data. We find that entity-based feature expansion results in significant improvements in retrieval effectiveness over state-of-the-art text expansion approaches
    • …
    corecore