2,742 research outputs found

    A Survey on Behavioral Pattern Mining from Sensor Data in Internet of Things

    Get PDF
    The deployment of large-scale wireless sensor networks (WSNs) for the Internet of Things (IoT) applications is increasing day-by-day, especially with the emergence of smart city services. The sensor data streams generated from these applications are largely dynamic, heterogeneous, and often geographically distributed over large areas. For high-value use in business, industry and services, these data streams must be mined to extract insightful knowledge, such as about monitoring (e.g., discovering certain behaviors over a deployed area) or network diagnostics (e.g., predicting faulty sensor nodes). However, due to the inherent constraints of sensor networks and application requirements, traditional data mining techniques cannot be directly used to mine IoT data streams efficiently and accurately in real-time. In the last decade, a number of works have been reported in the literature proposing behavioral pattern mining algorithms for sensor networks. This paper presents the technical challenges that need to be considered for mining sensor data. It then provides a thorough review of the mining techniques proposed in the recent literature to mine behavioral patterns from sensor data in IoT, and their characteristics and differences are highlighted and compared. We also propose a behavioral pattern mining framework for IoT and discuss possible future research directions in this area. © 2013 IEEE

    CNN-Based Health Model for Regular Health Factors Analysis in Internet-of-Medical Things Environment

    Get PDF
    Remote health monitoring applications with the advent of Internet of Things (IoT) technologies have changed traditional healthcare services. Additionally, in terms of personalized healthcare and disease prevention services, these depend primarily on the strategy used to derive knowledge from the analysis of lifestyle factors and activities. Through the use of intelligent data retrieval and classification models, it is possible to study disease, or even predict any abnormal health conditions. To predict such abnormality, the Convolutional neural network (CNN) model is used, which can detect the knowledge related to disease prediction accurately from unstructured medical health records. However, CNN uses a large amount of memory if it uses a fully connected network structure. Moreover, the increase in the number of layers can lead to an increase in the complexity analysis of the model. Therefore, to overcome these limitations of the CNN-model, we propose a CNN-regular target detection and recognition model based on the Pearson Correlation Coefficient and regular pattern behavior, where the term "regular" denotes objects that generally appear in similar contexts and have structures with low variability. In this framework, we develop a CNN-regular pattern discovery model for data classification. First, the most important health-related factors are selected in the first hidden layer, then in the second layer, a correlation coefficient analysis is conducted to classify the positively and negatively correlated health factors. Moreover, regular patterns' behaviors are discovered through mining the regular pattern occurrence among the classified health factors. The output of the model is subdivided into regular-correlated parameters related to obesity, high blood pressure, and diabetes. Two distinct datasets are adopted to mitigate the effects of the CNN-regular knowledge discovery model. The experimental results show that the proposed model has better accuracy, and low computational load, compared with three different machine learning techniques methods

    Internet of Things for Sustainable Human Health

    Get PDF
    The sustainable health IoT has the strong potential to bring tremendous improvements in human health and well-being through sensing, and monitoring of health impacts across the whole spectrum of climate change. The sustainable health IoT enables development of a systems approach in the area of human health and ecosystem. It allows integration of broader health sub-areas in a bigger archetype for improving sustainability in health in the realm of social, economic, and environmental sectors. This integration provides a powerful health IoT framework for sustainable health and community goals in the wake of changing climate. In this chapter, a detailed description of climate-related health impacts on human health is provided. The sensing, communications, and monitoring technologies are discussed. The impact of key environmental and human health factors on the development of new IoT technologies also analyzed

    Generierung menschlicher Verhaltensprofile mittels unüberwachter Methoden zur Bewertung des Gesundheitszustandes

    Get PDF
    In the context of ambient assisted living, implementation of human behavior profiling is expected to occur through pervasive computing. As for information extraction from measured data, the typical way are supervised methods. However, due to the low adaptivity and high dependency on lab-setting, and the necessity of data labeling and model training, these types of methods are limited in human behavior profiling in real-life scenarios. Therefore, simple and unobtrusive sensors are relied upon to obtain daily behavior information. In spite of the incomplete observation, these sensors are able to provide key information. Thus, unsupervised methods have to be designed based on this measurement. In contrast to supervised data analysis, unsupervised methods have inherent advantages: Firstly, data labeling and training are not necessary. Secondly, they are more adaptive, making them suitable for use by different individuals. Thirdly, unknown knowledge might be discovered. In order to propose unsupervised methods for human behavior profiling that can be practically applied, the following research is conducted in this doctoral thesis: First, abstractions of events and patterns of in-home behavior scenario are defined. Second, the discovering algorithm is derived, whereby regularly occurring sensor events that can represent lifestyle patterns can be discovered. Third, with the lifestyle depicted, the change of human behavior is modeled to present the variance of lifestyle. Aiming to investigate the effectiveness of these methods, they are applied to the datasets obtained in GAL-NATARS study, which is carried out in the setting of real-life, and their effectiveness is evaluated through comparison with medical assessment results.Im Rahmen von Ambient Assisted Living sollen menschliche Verhaltensprofile durch den Pervasive Computing generiert werden. Zur Extraktion von Informationen aus Messdaten werden typischerweise überwachte Methoden verwendet. In Bezug sind diese Methoden wegen ihrer geringen Anpassungsfähigkeit, hohen Abhängigkeit von Laborumgebungen, der Notwendigkeit der Kennzeichnung und der Lernphase in realen Szenarien zur Generierung von menschliche Verhaltensprofile sehr eingeschränkt. Daher sollten einfache und unauffällige Sensoren verwendet werden, um täglich Verhaltensinformationen zu erhalten. Trotz der unvollständigen Beobachtung sind diese Sensoren in der Lage, die wichtige Informationen zu liefern. Hierfür sind unüberwachte Methoden notwendig, die auf der Grundlage dieser Messungen ausgeführt werden. Im Gegensatz zur überwachten Datenanalyse, haben unüberwachte Methoden folgende Vorteile: Zum einen sind keine Kennzeichnung von Daten und keine Lernphase erforderlich. Zweitens sind sie anpassungsfähiger, so dass sie für die Verwendung bei verschiedenen Individuen geeignet sind. Drittens können siebisher unbekanntes Wissen entdecken. Zur Entwicklung von praktisch anwendbaren unüberwachten Methoden für die Generierung menschlicher Verhaltensprofile, wird in dieser Doktorarbeit die folgende Forschung durchgeführt: Erstens, Definition von Abstraktionen für Ereignisse und Muster häuslichen Verhaltens. Zweitens wird ein Entdeckungsalgorithmus abgeleitet, der regelmäßig auftretende Sensorereignisse, die Lebensgewohnheiten darstellen können, entdecken kann. Drittens, wird mit den so gewonnenen Lebensgewohnheiten, die Änderung des menschlichen Verhaltens modelliert, um die Varianz des Lebensstils abzubilden. Mit dem Ziel, die Wirksamkeit dieser Methoden zu untersuchen, werden sie auf Datensätze aus dem Feld, gesammelt in der GAL-NATARS Studie durchgeführt wird, angewendet. Ihre Wirksamkeit wird durch den Vergleich mit den Ergebnissen der medizinischen Beurteilung bewertet

    IoT and Sensor Networks in Industry and Society

    Get PDF
    The exponential progress of Information and Communication Technology (ICT) is one of the main elements that fueled the acceleration of the globalization pace. Internet of Things (IoT), Artificial Intelligence (AI) and big data analytics are some of the key players of the digital transformation that is affecting every aspect of human's daily life, from environmental monitoring to healthcare systems, from production processes to social interactions. In less than 20 years, people's everyday life has been revolutionized, and concepts such as Smart Home, Smart Grid and Smart City have become familiar also to non-technical users. The integration of embedded systems, ubiquitous Internet access, and Machine-to-Machine (M2M) communications have paved the way for paradigms such as IoT and Cyber Physical Systems (CPS) to be also introduced in high-requirement environments such as those related to industrial processes, under the forms of Industrial Internet of Things (IIoT or I2oT) and Cyber-Physical Production Systems (CPPS). As a consequence, in 2011 the German High-Tech Strategy 2020 Action Plan for Germany first envisioned the concept of Industry 4.0, which is rapidly reshaping traditional industrial processes. The term refers to the promise to be the fourth industrial revolution. Indeed, the first industrial revolution was triggered by water and steam power. Electricity and assembly lines enabled mass production in the second industrial revolution. In the third industrial revolution, the introduction of control automation and Programmable Logic Controllers (PLCs) gave a boost to factory production. As opposed to the previous revolutions, Industry 4.0 takes advantage of Internet access, M2M communications, and deep learning not only to improve production efficiency but also to enable the so-called mass customization, i.e. the mass production of personalized products by means of modularized product design and flexible processes. Less than five years later, in January 2016, the Japanese 5th Science and Technology Basic Plan took a further step by introducing the concept of Super Smart Society or Society 5.0. According to this vision, in the upcoming future, scientific and technological innovation will guide our society into the next social revolution after the hunter-gatherer, agrarian, industrial, and information eras, which respectively represented the previous social revolutions. Society 5.0 is a human-centered society that fosters the simultaneous achievement of economic, environmental and social objectives, to ensure a high quality of life to all citizens. This information-enabled revolution aims to tackle today’s major challenges such as an ageing population, social inequalities, depopulation and constraints related to energy and the environment. Accordingly, the citizens will be experiencing impressive transformations into every aspect of their daily lives. This book offers an insight into the key technologies that are going to shape the future of industry and society. It is subdivided into five parts: the I Part presents a horizontal view of the main enabling technologies, whereas the II-V Parts offer a vertical perspective on four different environments. The I Part, dedicated to IoT and Sensor Network architectures, encompasses three Chapters. In Chapter 1, Peruzzi and Pozzebon analyse the literature on the subject of energy harvesting solutions for IoT monitoring systems and architectures based on Low-Power Wireless Area Networks (LPWAN). The Chapter does not limit the discussion to Long Range Wise Area Network (LoRaWAN), SigFox and Narrowband-IoT (NB-IoT) communication protocols, but it also includes other relevant solutions such as DASH7 and Long Term Evolution MAchine Type Communication (LTE-M). In Chapter 2, Hussein et al. discuss the development of an Internet of Things message protocol that supports multi-topic messaging. The Chapter further presents the implementation of a platform, which integrates the proposed communication protocol, based on Real Time Operating System. In Chapter 3, Li et al. investigate the heterogeneous task scheduling problem for data-intensive scenarios, to reduce the global task execution time, and consequently reducing data centers' energy consumption. The proposed approach aims to maximize the efficiency by comparing the cost between remote task execution and data migration. The II Part is dedicated to Industry 4.0, and includes two Chapters. In Chapter 4, Grecuccio et al. propose a solution to integrate IoT devices by leveraging a blockchain-enabled gateway based on Ethereum, so that they do not need to rely on centralized intermediaries and third-party services. As it is better explained in the paper, where the performance is evaluated in a food-chain traceability application, this solution is particularly beneficial in Industry 4.0 domains. Chapter 5, by De Fazio et al., addresses the issue of safety in workplaces by presenting a smart garment that integrates several low-power sensors to monitor environmental and biophysical parameters. This enables the detection of dangerous situations, so as to prevent or at least reduce the consequences of workers accidents. The III Part is made of two Chapters based on the topic of Smart Buildings. In Chapter 6, Petroșanu et al. review the literature about recent developments in the smart building sector, related to the use of supervised and unsupervised machine learning models of sensory data. The Chapter poses particular attention on enhanced sensing, energy efficiency, and optimal building management. In Chapter 7, Oh examines how much the education of prosumers about their energy consumption habits affects power consumption reduction and encourages energy conservation, sustainable living, and behavioral change, in residential environments. In this Chapter, energy consumption monitoring is made possible thanks to the use of smart plugs. Smart Transport is the subject of the IV Part, including three Chapters. In Chapter 8, Roveri et al. propose an approach that leverages the small world theory to control swarms of vehicles connected through Vehicle-to-Vehicle (V2V) communication protocols. Indeed, considering a queue dominated by short-range car-following dynamics, the Chapter demonstrates that safety and security are increased by the introduction of a few selected random long-range communications. In Chapter 9, Nitti et al. present a real time system to observe and analyze public transport passengers' mobility by tracking them throughout their journey on public transport vehicles. The system is based on the detection of the active Wi-Fi interfaces, through the analysis of Wi-Fi probe requests. In Chapter 10, Miler et al. discuss the development of a tool for the analysis and comparison of efficiency indicated by the integrated IT systems in the operational activities undertaken by Road Transport Enterprises (RTEs). The authors of this Chapter further provide a holistic evaluation of efficiency of telematics systems in RTE operational management. The book ends with the two Chapters of the V Part on Smart Environmental Monitoring. In Chapter 11, He et al. propose a Sea Surface Temperature Prediction (SSTP) model based on time-series similarity measure, multiple pattern learning and parameter optimization. In this strategy, the optimal parameters are determined by means of an improved Particle Swarm Optimization method. In Chapter 12, Tsipis et al. present a low-cost, WSN-based IoT system that seamlessly embeds a three-layered cloud/fog computing architecture, suitable for facilitating smart agricultural applications, especially those related to wildfire monitoring. We wish to thank all the authors that contributed to this book for their efforts. We express our gratitude to all reviewers for the volunteering support and precious feedback during the review process. We hope that this book provides valuable information and spurs meaningful discussion among researchers, engineers, businesspeople, and other experts about the role of new technologies into industry and society

    An Exploratory Study of Patient Falls

    Get PDF
    Debate continues between the contribution of education level and clinical expertise in the nursing practice environment. Research suggests a link between Baccalaureate of Science in Nursing (BSN) nurses and positive patient outcomes such as lower mortality, decreased falls, and fewer medication errors. Purpose: To examine if there a negative correlation between patient falls and the level of nurse education at an urban hospital located in Midwest Illinois during the years 2010-2014? Methods: A retrospective crosssectional cohort analysis was conducted using data from the National Database of Nursing Quality Indicators (NDNQI) from the years 2010-2014. Sample: Inpatients aged ≥ 18 years who experienced a unintentional sudden descent, with or without injury that resulted in the patient striking the floor or object and occurred on inpatient nursing units. Results: The regression model was constructed with annual patient falls as the dependent variable and formal education and a log transformed variable for percentage of certified nurses as the independent variables. The model overall is a good fit, F (2,22) = 9.014, p = .001, adj. R2 = .40. Conclusion: Annual patient falls will decrease by increasing the number of nurses with baccalaureate degrees and/or certifications from a professional nursing board-governing body

    Socio-Cognitive and Affective Computing

    Get PDF
    Social cognition focuses on how people process, store, and apply information about other people and social situations. It focuses on the role that cognitive processes play in social interactions. On the other hand, the term cognitive computing is generally used to refer to new hardware and/or software that mimics the functioning of the human brain and helps to improve human decision-making. In this sense, it is a type of computing with the goal of discovering more accurate models of how the human brain/mind senses, reasons, and responds to stimuli. Socio-Cognitive Computing should be understood as a set of theoretical interdisciplinary frameworks, methodologies, methods and hardware/software tools to model how the human brain mediates social interactions. In addition, Affective Computing is the study and development of systems and devices that can recognize, interpret, process, and simulate human affects, a fundamental aspect of socio-cognitive neuroscience. It is an interdisciplinary field spanning computer science, electrical engineering, psychology, and cognitive science. Physiological Computing is a category of technology in which electrophysiological data recorded directly from human activity are used to interface with a computing device. This technology becomes even more relevant when computing can be integrated pervasively in everyday life environments. Thus, Socio-Cognitive and Affective Computing systems should be able to adapt their behavior according to the Physiological Computing paradigm. This book integrates proposals from researchers who use signals from the brain and/or body to infer people's intentions and psychological state in smart computing systems. The design of this kind of systems combines knowledge and methods of ubiquitous and pervasive computing, as well as physiological data measurement and processing, with those of socio-cognitive and affective computing

    Enhanced Living Environments

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1303 “Algorithms, Architectures and Platforms for Enhanced Living Environments (AAPELE)”. The concept of Enhanced Living Environments (ELE) refers to the area of Ambient Assisted Living (AAL) that is more related with Information and Communication Technologies (ICT). Effective ELE solutions require appropriate ICT algorithms, architectures, platforms, and systems, having in view the advance of science and technology in this area and the development of new and innovative solutions that can provide improvements in the quality of life for people in their homes and can reduce the financial burden on the budgets of the healthcare providers. The aim of this book is to become a state-of-the-art reference, discussing progress made, as well as prompting future directions on theories, practices, standards, and strategies related to the ELE area. The book contains 12 chapters and can serve as a valuable reference for undergraduate students, post-graduate students, educators, faculty members, researchers, engineers, medical doctors, healthcare organizations, insurance companies, and research strategists working in this area
    corecore