4,077 research outputs found

    Encapsulation of Soft Computing Approaches within Itemset Mining a A Survey

    Get PDF
    Data Mining discovers patterns and trends by extracting knowledge from large databases. Soft Computing techniques such as fuzzy logic, neural networks, genetic algorithms, rough sets, etc. aims to reveal the tolerance for imprecision and uncertainty for achieving tractability, robustness and low-cost solutions. Fuzzy Logic and Rough sets are suitable for handling different types of uncertainty. Neural networks provide good learning and generalization. Genetic algorithms provide efficient search algorithms for selecting a model, from mixed media data. Data mining refers to information extraction while soft computing is used for information processing. For effective knowledge discovery from large databases, both Soft Computing and Data Mining can be merged. Association rule mining (ARM) and Itemset mining focus on finding most frequent item sets and corresponding association rules, extracting rare itemsets including temporal and fuzzy concepts in discovered patterns. This survey paper explores the usage of soft computing approaches in itemset utility mining

    Knowledge Discovery in Databases: An Information Retrieval Perspective

    Get PDF
    The current trend of increasing capabilities in data generation and collection has resulted in an urgent need for data mining applications, also called knowledge discovery in databases. This paper identifies and examines the issues involved in extracting useful grains of knowledge from large amounts of data. It describes a framework to categorise data mining systems. The author also gives an overview of the issues pertaining to data pre processing, as well as various information gathering methodologies and techniques. The paper covers some popular tools such as classification, clustering, and generalisation. A summary of statistical and machine learning techniques used currently is also provided

    A comparative study of the AHP and TOPSIS methods for implementing load shedding scheme in a pulp mill system

    Get PDF
    The advancement of technology had encouraged mankind to design and create useful equipment and devices. These equipment enable users to fully utilize them in various applications. Pulp mill is one of the heavy industries that consumes large amount of electricity in its production. Due to this, any malfunction of the equipment might cause mass losses to the company. In particular, the breakdown of the generator would cause other generators to be overloaded. In the meantime, the subsequence loads will be shed until the generators are sufficient to provide the power to other loads. Once the fault had been fixed, the load shedding scheme can be deactivated. Thus, load shedding scheme is the best way in handling such condition. Selected load will be shed under this scheme in order to protect the generators from being damaged. Multi Criteria Decision Making (MCDM) can be applied in determination of the load shedding scheme in the electric power system. In this thesis two methods which are Analytic Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) were introduced and applied. From this thesis, a series of analyses are conducted and the results are determined. Among these two methods which are AHP and TOPSIS, the results shown that TOPSIS is the best Multi criteria Decision Making (MCDM) for load shedding scheme in the pulp mill system. TOPSIS is the most effective solution because of the highest percentage effectiveness of load shedding between these two methods. The results of the AHP and TOPSIS analysis to the pulp mill system are very promising

    Negative-GSP: An efficient method for mining negative sequential patterns

    Full text link
    Different from traditional positive sequential pattern mining, negative sequential pattern mining considers both positive and negative relationships between items. Negative sequential pattern mining doesn't necessarily follow the Apriori principle, and the searching space is much larger than positive pattern mining. Giving definitions and some constraints of negative sequential patterns, this paper proposes a new method for mining negative sequential patterns, called Negative-GSP. Negative-GSP can find negative sequential patterns effectively and efficiently by joining and pruning, and extensive experimental results show the efficiency of the method. © 2009, Australian Computer Society, Inc

    ARM-AMO: An Efficient Association Rule Mining Algorithm Based on Animal Migration Optimization

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI linkAssociation rule mining (ARM) aims to find out association rules that satisfy predefined minimum support and confidence from a given database. However, in many cases ARM generates extremely large number of association rules, which are impossible for end users to comprehend or validate, thereby limiting the usefulness of data mining results. In this paper, we propose a new mining algorithm based on Animal Migration Optimization (AMO), called ARM-AMO, to reduce the number of association rules. It is based on the idea that rules which are not of high support and unnecessary are deleted from the data. Firstly, Apriori algorithm is applied to generate frequent itemsets and association rules. Then, AMO is used to reduce the number of association rules with a new fitness function that incorporates frequent rules. It is observed from the experiments that, in comparison with the other relevant techniques, ARM-AMO greatly reduces the computational time for frequent item set generation, memory for association rule generation, and the number of rules generated

    ARM-AMO: An Efficient Association Rule Mining Algorithm Based on Animal Migration Optimization

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI linkAssociation rule mining (ARM) aims to find out association rules that satisfy predefined minimum support and confidence from a given database. However, in many cases ARM generates extremely large number of association rules, which are impossible for end users to comprehend or validate, thereby limiting the usefulness of data mining results. In this paper, we propose a new mining algorithm based on Animal Migration Optimization (AMO), called ARM-AMO, to reduce the number of association rules. It is based on the idea that rules which are not of high support and unnecessary are deleted from the data. Firstly, Apriori algorithm is applied to generate frequent itemsets and association rules. Then, AMO is used to reduce the number of association rules with a new fitness function that incorporates frequent rules. It is observed from the experiments that, in comparison with the other relevant techniques, ARM-AMO greatly reduces the computational time for frequent item set generation, memory for association rule generation, and the number of rules generated

    Enhancing the Prediction of Missing Targeted Items from the Transactions of Frequent, Known Users

    Get PDF
    The ability for individual grocery retailers to have a single view of its customers across all of their grocery purchases remains elusive, and is considered the “holy grail” of grocery retailing. This has become increasingly important in recent years, especially in the UK, where competition has intensified, shopping habits and demographics have changed, and price sensitivity has increased. Whilst numerous studies have been conducted on understanding independent items that are frequently bought together, there has been little research conducted on using this knowledge of frequent itemsets to support decision making for targeted promotions. Indeed, having an effective targeted promotions approach may be seen as an outcome of the “holy grail”, as it will allow retailers to promote the right item, to the right customer, using the right incentives to drive up revenue, profitability, and customer share, whilst minimising costs. Given this, the key and original contribution of this study is the development of the market target (mt) model, the clustering approach, and the computer-based algorithm to enhance targeted promotions. Tests conducted on large scale consumer panel data, with over 32000 customers and 51 million individual scanned items per year, show that the mt model and the clustering approach successfully identifies both the best items, and customers to target. Further, the algorithm segregates customers into differing categories of loyalty, in this case it is four, to enable retailers to offer customised incentives schemes to each group, thereby enhancing customer engagement, whilst preventing unnecessary revenue erosion. The proposed model is compared with both a recently published approach, and the cross-sectional shopping patterns of the customers on the consumer scanner panel. Tests show that the proposed approach outperforms the other approach in that it significantly reduces the probability of having “false negatives” and “false positives” in the target customer set. Tests also show that the customer segmentation approach is effective, in that customers who are classed as highly loyal to a grocery retailer, are indeed loyal, whilst those that are classified as “switchers” do indeed have low levels of loyalty to the selected grocery retailer. Applying the mt model to other fields has not only been novel but yielded success. School attendance is improved with the aid of the mt model being applied to attendance data. In this regard, an action research study, involving the proposed mt model and approach, conducted at a local UK primary school, has resulted in the school now meeting the required attendance targets set by the government, and it has halved its persistent absenteeism for the first time in four years. In medicine, the mt model is seen as a useful tool that could rapidly uncover associations that may lead to new research hypotheses, whilst in crime prevention, the mt value may be used as an effective, tangible, efficiency metric that will lead to enhanced crime prevention outcomes, and support stronger community engagement. Future work includes the development of a software program for improving school attendance that will be offered to all schools, while further progress will be made on demonstrating the effectiveness of the mt value as a tangible crime prevention metric

    Predictive Modelling of Retail Banking Transactions for Credit Scoring, Cross-Selling and Payment Pattern Discovery

    Get PDF
    Evaluating transactional payment behaviour offers a competitive advantage in the modern payment ecosystem, not only for confirming the presence of good credit applicants or unlocking the cross-selling potential between the respective product and service portfolios of financial institutions, but also to rule out bad credit applicants precisely in transactional payments streams. In a diagnostic test for analysing the payment behaviour, I have used a hybrid approach comprising a combination of supervised and unsupervised learning algorithms to discover behavioural patterns. Supervised learning algorithms can compute a range of credit scores and cross-sell candidates, although the applied methods only discover limited behavioural patterns across the payment streams. Moreover, the performance of the applied supervised learning algorithms varies across the different data models and their optimisation is inversely related to the pre-processed dataset. Subsequently, the research experiments conducted suggest that the Two-Class Decision Forest is an effective algorithm to determine both the cross-sell candidates and creditworthiness of their customers. In addition, a deep-learning model using neural network has been considered with a meaningful interpretation of future payment behaviour through categorised payment transactions, in particular by providing additional deep insights through graph-based visualisations. However, the research shows that unsupervised learning algorithms play a central role in evaluating the transactional payment behaviour of customers to discover associations using market basket analysis based on previous payment transactions, finding the frequent transactions categories, and developing interesting rules when each transaction category is performed on the same payment stream. Current research also reveals that the transactional payment behaviour analysis is multifaceted in the financial industry for assessing the diagnostic ability of promotion candidates and classifying bad credit applicants from among the entire customer base. The developed predictive models can also be commonly used to estimate the credit risk of any credit applicant based on his/her transactional payment behaviour profile, combined with deep insights from the categorised payment transactions analysis. The research study provides a full review of the performance characteristic results from different developed data models. Thus, the demonstrated data science approach is a possible proof of how machine learning models can be turned into cost-sensitive data models

    PGLCM: Efficient Parallel Mining of Closed Frequent Gradual Itemsets

    Get PDF
    International audienceNumerical data (e.g., DNA micro-array data, sensor data) pose a challenging problem to existing frequent pattern mining methods which hardly handle them. In this framework, gradual patterns have been recently proposed to extract covariations of attributes, such as: "When X increases, Y decreases". There exist some algorithms for mining frequent gradual patterns, but they cannot scale to real-world databases. We present in this paper GLCM, the first algorithm for mining closed frequent gradual patterns, which proposes strong complexity guarantees: the mining time is linear with the number of closed frequent gradual item sets. Our experimental study shows that GLCM is two orders of magnitude faster than the state of the art, with a constant low memory usage. We also present PGLCM, a parallelization of GLCM capable of exploiting multicore processors, with good scale-up properties on complex datasets. These algorithms are the first algorithms capable of mining large real world datasets to discover gradual patterns
    • …
    corecore