990 research outputs found

    Modular Product Platform Configuration and Co-Design of Assembly Line

    Get PDF
    In this dissertation, the main hypothesis is that formation of products families and platforms can be simultaneously achieved with their corresponding assembly lines using a holistic mathematical model to increase the effectiveness of mass customization and decrease development and assembly costs. A Phylogenetic Network algorithm, four different mathematical models, and postponement effectiveness metric have been developed and implemented to prove this hypothesis. The results of this research are applicable to many modular products such as consumer goods such as computers, laptops, tablets, power tools, home appliances and laboratory weighing scales which have multiple variants. The research provides a hybrid approach balancing between platforms production using make-to-stock strategy, then further customization using make-to-order strategy. The Median-Joining Phylogenetic Network (MJPN) is used to model a delayed differentiation assembly line for a product family. The MJPN is capable of increasing commonality across the product platforms using the Median Vector concept. A Postponement Effectiveness metric was developed and showed that the determined assembly line strategy postponed the products delayed differentiation point more than other found in literature. A Modular Product Multi-Platform Configuration Model is introduced to design optimal products platforms which allow assembly and disassembly of components to form new product variants. A new model of Hierarchic Changeable Modular Product Platforms which defines the optimum hierarchy of the platform components is introduced, to enable delayed product differentiation. A Multi-Period Multi-Platform Configuration Model which accounts for demand fluctuation by including the cost and quantity of inventory of product platforms required for implementing the assembly/disassembly platforms customization was developed. Finally, a global product families and platforms formation mathematical model which fully integrates assembly task assignments, precedence relations, assembly cost was introduced. A family of touch screen tablets was used for illustrating the application and advantages of the newly developed product platform models. This research makes a number of contributions. This is the first time mathematical models are able to flexibly determine the optimal number of product platforms using customization by assembly and disassembly. Inclusion of hierarchy or assembly sequence in platform formation as a variable is novel. This will eliminate assembly sequence ambiguity when designing platforms with duplicate components. The inclusion of inventory costs and quantities in platform design is also new. Finally, the complete integration of platform formation and assembly line design in one mathematical model is introduced for the first time

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man

    Modelling and simulation of paradigms for printed circuit board assembly to support the UK's competency in high reliability electronics

    Get PDF
    The fundamental requirement of the research reported within this thesis is the provision of physical models to enable model based simulation of mainstream printed circuit assembly (PCA) process discrete events for use within to-be-developed (or under development) software tools which codify cause & effects knowledge for use in product and process design optimisation. To support a national competitive advantage in high reliability electronics UK based producers of aircraft electronic subsystems require advanced simulation tools which offer model based guidance. In turn, maximization of manufacturability and minimization of uncontrolled rework must therefore enhance inservice sustainability for ‘power-by-the-hour’ commercial aircraft operation business models. [Continues.

    Impact of RFID information-sharing coordination over a supply chain with reverse logistics

    Get PDF
    Companies have adopted environmental practices such as reverse logistics over the past few decades. However, studies show that aligning partners inside the green supply chain can be a substantial problem. This lack of coordination can increase overall supply chain cost. Information technology such as Radio Frequency Identification (RFID) has the potential to enable decentralized supply chain coordinate their information. Even though there are research that address RFID on traditional supply chain, few researches address how to coordinate RFID information sharing in a green supply chain. We study, through simulation experiments, two types of RFID information-sharing coordination under different configurations related with their inventory policies: basic and advanced. Statistical analyses show that better results can be presented in advanced RFID configuration given new coordination and inventory policy decisions presented. In addition, these findings shows what are the RFID information-sharing coordination that can provide better system improvement depending on the supply chain scenarios and factors
    • …
    corecore