82 research outputs found

    AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities and Challenges

    Full text link
    Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes, particularly in cloud infrastructures, to provide actionable insights with the primary goal of maximizing availability. There are a wide variety of problems to address, and multiple use-cases, where AI capabilities can be leveraged to enhance operational efficiency. Here we provide a review of the AIOps vision, trends challenges and opportunities, specifically focusing on the underlying AI techniques. We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful. We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions. We discuss the problem formulation for each task, and then present a taxonomy of techniques to solve these problems. We also identify relatively under explored topics, especially those that could significantly benefit from advances in AI literature. We also provide insights into the trends in this field, and what are the key investment opportunities

    Log-based software monitoring: a systematic mapping study

    Full text link
    Modern software development and operations rely on monitoring to understand how systems behave in production. The data provided by application logs and runtime environment are essential to detect and diagnose undesired behavior and improve system reliability. However, despite the rich ecosystem around industry-ready log solutions, monitoring complex systems and getting insights from log data remains a challenge. Researchers and practitioners have been actively working to address several challenges related to logs, e.g., how to effectively provide better tooling support for logging decisions to developers, how to effectively process and store log data, and how to extract insights from log data. A holistic view of the research effort on logging practices and automated log analysis is key to provide directions and disseminate the state-of-the-art for technology transfer. In this paper, we study 108 papers (72 research track papers, 24 journals, and 12 industry track papers) from different communities (e.g., machine learning, software engineering, and systems) and structure the research field in light of the life-cycle of log data. Our analysis shows that (1) logging is challenging not only in open-source projects but also in industry, (2) machine learning is a promising approach to enable a contextual analysis of source code for log recommendation but further investigation is required to assess the usability of those tools in practice, (3) few studies approached efficient persistence of log data, and (4) there are open opportunities to analyze application logs and to evaluate state-of-the-art log analysis techniques in a DevOps context

    A Framework for Hybrid Intrusion Detection Systems

    Get PDF
    Web application security is a definite threat to the world’s information technology infrastructure. The Open Web Application Security Project (OWASP), generally defines web application security violations as unauthorized or unintentional exposure, disclosure, or loss of personal information. These breaches occur without the company’s knowledge and it often takes a while before the web application attack is revealed to the public, specifically because the security violations are fixed. Due to the need to protect their reputation, organizations have begun researching solutions to these problems. The most widely accepted solution is the use of an Intrusion Detection System (IDS). Such systems currently rely on either signatures of the attack used for the data breach or changes in the behavior patterns of the system to identify an intruder. These systems, either signature-based or anomaly-based, are readily understood by attackers. Issues arise when attacks are not noticed by an existing IDS because the attack does not fit the pre-defined attack signatures the IDS is implemented to discover. Despite current IDSs capabilities, little research has identified a method to detect all potential attacks on a system. This thesis intends to address this problem. A particular emphasis will be placed on detecting advanced attacks, such as those that take place at the application layer. These types of attacks are able to bypass existing IDSs, increase the potential for a web application security breach to occur and not be detected. In particular, the attacks under study are all web application layer attacks. Those included in this thesis are SQL injection, cross-site scripting, directory traversal and remote file inclusion. This work identifies common and existing data breach detection methods as well as the necessary improvements for IDS models. Ultimately, the proposed approach combines an anomaly detection technique measured by cross entropy and a signature-based attack detection framework utilizing genetic algorithm. The proposed hybrid model for data breach detection benefits organizations by increasing security measures and allowing attacks to be identified in less time and more efficiently

    Business Process Management: A Comprehensive Survey

    Get PDF

    Cybersecurity issues in software architectures for innovative services

    Get PDF
    The recent advances in data center development have been at the basis of the widespread success of the cloud computing paradigm, which is at the basis of models for software based applications and services, which is the "Everything as a Service" (XaaS) model. According to the XaaS model, service of any kind are deployed on demand as cloud based applications, with a great degree of flexibility and a limited need for investments in dedicated hardware and or software components. This approach opens up a lot of opportunities, for instance providing access to complex and widely distributed applications, whose cost and complexity represented in the past a significant entry barrier, also to small or emerging businesses. Unfortunately, networking is now embedded in every service and application, raising several cybersecurity issues related to corruption and leakage of data, unauthorized access, etc. However, new service-oriented architectures are emerging in this context, the so-called services enabler architecture. The aim of these architectures is not only to expose and give the resources to these types of services, but it is also to validate them. The validation includes numerous aspects, from the legal to the infrastructural ones e.g., but above all the cybersecurity threats. A solid threat analysis of the aforementioned architecture is therefore necessary, and this is the main goal of this thesis. This work investigate the security threats of the emerging service enabler architectures, providing proof of concepts for these issues and the solutions too, based on several use-cases implemented in real world scenarios

    Flexible evolutionary algorithms for mining structured process models

    Get PDF

    ICSEA 2021: the sixteenth international conference on software engineering advances

    Get PDF
    The Sixteenth International Conference on Software Engineering Advances (ICSEA 2021), held on October 3 - 7, 2021 in Barcelona, Spain, continued a series of events covering a broad spectrum of software-related topics. The conference covered fundamentals on designing, implementing, testing, validating and maintaining various kinds of software. The tracks treated the topics from theory to practice, in terms of methodologies, design, implementation, testing, use cases, tools, and lessons learnt. The conference topics covered classical and advanced methodologies, open source, agile software, as well as software deployment and software economics and education. The conference had the following tracks: Advances in fundamentals for software development Advanced mechanisms for software development Advanced design tools for developing software Software engineering for service computing (SOA and Cloud) Advanced facilities for accessing software Software performance Software security, privacy, safeness Advances in software testing Specialized software advanced applications Web Accessibility Open source software Agile and Lean approaches in software engineering Software deployment and maintenance Software engineering techniques, metrics, and formalisms Software economics, adoption, and education Business technology Improving productivity in research on software engineering Trends and achievements Similar to the previous edition, this event continued to be very competitive in its selection process and very well perceived by the international software engineering community. As such, it is attracting excellent contributions and active participation from all over the world. We were very pleased to receive a large amount of top quality contributions. We take here the opportunity to warmly thank all the members of the ICSEA 2021 technical program committee as well as the numerous reviewers. The creation of such a broad and high quality conference program would not have been possible without their involvement. We also kindly thank all the authors that dedicated much of their time and efforts to contribute to the ICSEA 2021. We truly believe that thanks to all these efforts, the final conference program consists of top quality contributions. This event could also not have been a reality without the support of many individuals, organizations and sponsors. We also gratefully thank the members of the ICSEA 2021 organizing committee for their help in handling the logistics and for their work that is making this professional meeting a success. We hope the ICSEA 2021 was a successful international forum for the exchange of ideas and results between academia and industry and to promote further progress in software engineering research

    Exploiting cloud utility models for profit and ruin

    Get PDF
    A key characteristic that has led to the early adoption of public cloud computing is the utility pricing model that governs the cost of compute resources consumed. Similar to public utilities like gas and electricity, cloud consumers only pay for the resources they consume and only for the time they are utilized. As a result and pursuant to a Cloud Service Provider\u27s (CSP) Terms of Agreement, cloud consumers are responsible for all computational costs incurred within and in support of their rented computing environments whether these resources were consumed in good faith or not. While initial threat modeling and security research on the public cloud model has primarily focused on the confidentiality and integrity of data transferred, processed, and stored in the cloud, little attention has been paid to the external threat sources that have the capability to affect the financial viability of cloud-hosted services. Bounded by a utility pricing model, Internet-facing web resources hosted in the cloud are vulnerable to Fraudulent Resource Consumption (FRC) attacks. Unlike an application-layer DDoS attack that consumes resources with the goal of disrupting short-term availability, a FRC attack is a considerably more subtle attack that instead targets the utility model over an extended time period. By fraudulently consuming web resources in sufficient volume (i.e. data transferred out of the cloud), an attacker is able to inflict significant fraudulent charges to the victim. This work introduces and thoroughly describes the FRC attack and discusses why current application-layer DDoS mitigation schemes are not applicable to a more subtle attack. The work goes on to propose three detection metrics that together form the criteria for detecting a FRC attack from that of normal web activity and an attribution methodology capable of accurately identifying FRC attack clients. Experimental results based on plausible and challenging attack scenarios show that an attacker, without knowledge of the training web log, has a difficult time mimicking the self-similar and consistent request semantics of normal web activity necessary to carryout a successful FRC attack
    • …
    corecore