144,099 research outputs found

    Mining developer communication data streams

    Full text link
    This paper explores the concepts of modelling a software development project as a process that results in the creation of a continuous stream of data. In terms of the Jazz repository used in this research, one aspect of that stream of data would be developer communication. Such data can be used to create an evolving social network characterized by a range of metrics. This paper presents the application of data stream mining techniques to identify the most useful metrics for predicting build outcomes. Results are presented from applying the Hoeffding Tree classification method used in conjunction with the Adaptive Sliding Window (ADWIN) method for detecting concept drift. The results indicate that only a small number of the available metrics considered have any significance for predicting the outcome of a build

    Batch-Incremental Learning for Mining Data Streams

    Get PDF
    The data stream model for data mining places harsh restrictions on a learning algorithm. First, a model must be induced incrementally. Second, processing time for instances must keep up with their speed of arrival. Third, a model may only use a constant amount of memory, and must be ready for prediction at any point in time. We attempt to overcome these restrictions by presenting a data stream classification algorithm where the data is split into a stream of disjoint batches. Single batches of data can be processed one after the other by any standard non-incremental learning algorithm. Our approach uses ensembles of decision trees. These tree ensembles are iteratively merged into a single interpretable model of constant maximal size. Using benchmark datasets the algorithm is evaluated for accuracy against state-of-the-art algorithms that make use of the entire dataset

    Towards mining trapezoidal data streams

    Full text link
    © 2015 IEEE. We study a new problem of learning from doubly-streaming data where both data volume and feature space increase over time. We refer to the problem as mining trapezoidal data streams. The problem is challenging because both data volume and feature space are increasing, to which existing online learning, online feature selection and streaming feature selection algorithms are inapplicable. We propose a new Sparse Trapezoidal Streaming Data mining algorithm (STSD) and its two variants which combine online learning and online feature selection to enable learning trapezoidal data streams with infinite training instances and features. Specifically, when new training instances carrying new features arrive, the classifier updates the existing features by following the passive-aggressive update rule used in online learning and updates the new features with the structural risk minimization principle. Feature sparsity is also introduced using the projected truncation techniques. Extensive experiments on the demonstrated UCI data sets show the performance of the proposed algorithms

    Mining data streams using option trees (revised edition, 2004)

    Get PDF
    The data stream model for data mining places harsh restrictions on a learning algorithm. A model must be induced following the briefest interrogation of the data, must use only available memory and must update itself over time within these constraints. Additionally, the model must be able to be used for data mining at any point in time. This paper describes a data stream classi_cation algorithm using an ensemble of option trees. The ensemble of trees is induced by boosting and iteratively combined into a single interpretable model. The algorithm is evaluated using benchmark datasets for accuracy against state-of-the-art algorithms that make use of the entire dataset

    Privacy-Preserving Classification of Data Streams

    Get PDF
    [[abstract]]Data mining is the information technology that extracts valuable knowledge from large amounts of data. Due to the emergence of data streams as a new type of data, data streams mining has recently become a very important and popular research issue. There have been many studies proposing efficient mining algorithms for data streams. On the other hand, data mining can cause a great threat to data privacy. Privacy-preserving data mining hence has also been studied. In this paper, we propose a method for privacy-preserving classification of data streams, called the PCDS method, which extends the process of data streams classification to achieve privacy preservation. The PCDS method is divided into two stages, which are data streams preprocessing and data streams mining, respectively. The stage of data streams preprocessing uses the data splitting and perturbation algorithm to perturb confidential data. Users can flexibly adjust the data attributes to be perturbed according to the security need. Therefore, threats and risks from releasing data can be effectively reduced. The stage of data streams mining uses the weighted average sliding window algorithm to mine perturbed data streams. When the classification error rate exceeds a predetermined threshold value, the classification model is reconstructed to maintain classification accuracy. Experimental results show that the PCDS method not only can preserve data privacy but also can mine data streams accurately.[[notice]]補正完畢[[incitationindex]]EI[[booktype]]紙

    Knowledge Discovery in Data Mining and Massive Data Mining

    Get PDF
    Knowledge discovery is a process of non trivial extraction of previously unknown and presently useful information. The rapid advancement of the technology resulted in the increasing rate of data distributions. The data generated from mobile applications, sensor applications, network monitoring, traffic management, weblogs etc. can be referred as a data stream. The data streams are massive in nature. The present work mainly aims at knowledge discovery using data mining and massive data mining techniques. The knowledge discovery process in both the techniques is compared by developing a classification model using Naive bayes classifier. The former case uses Edu-data, a data collected from technical education system and the latter case uses massive online analysis frame work to generate the data streams. Mining data stream is referred as Massive Data Mining. The data streams must be processed under very strict constraints of space and time using sophisticated techniques. The traditional data mining techniques are not advised on this massive data. Therefore the massive online analysis framework is used to mine the data streams. The present work happens to be unique in the literaturein
    corecore