3,405 research outputs found

    Hellinger Distance Trees for Imbalanced Streams

    Get PDF
    Classifiers trained on data sets possessing an imbalanced class distribution are known to exhibit poor generalisation performance. This is known as the imbalanced learning problem. The problem becomes particularly acute when we consider incremental classifiers operating on imbalanced data streams, especially when the learning objective is rare class identification. As accuracy may provide a misleading impression of performance on imbalanced data, existing stream classifiers based on accuracy can suffer poor minority class performance on imbalanced streams, with the result being low minority class recall rates. In this paper we address this deficiency by proposing the use of the Hellinger distance measure, as a very fast decision tree split criterion. We demonstrate that by using Hellinger a statistically significant improvement in recall rates on imbalanced data streams can be achieved, with an acceptable increase in the false positive rate.Comment: 6 Pages, 2 figures, to be published in Proceedings 22nd International Conference on Pattern Recognition (ICPR) 201

    Dynamic Data Mining: Methodology and Algorithms

    No full text
    Supervised data stream mining has become an important and challenging data mining task in modern organizations. The key challenges are threefold: (1) a possibly infinite number of streaming examples and time-critical analysis constraints; (2) concept drift; and (3) skewed data distributions. To address these three challenges, this thesis proposes the novel dynamic data mining (DDM) methodology by effectively applying supervised ensemble models to data stream mining. DDM can be loosely defined as categorization-organization-selection of supervised ensemble models. It is inspired by the idea that although the underlying concepts in a data stream are time-varying, their distinctions can be identified. Therefore, the models trained on the distinct concepts can be dynamically selected in order to classify incoming examples of similar concepts. First, following the general paradigm of DDM, we examine the different concept-drifting stream mining scenarios and propose corresponding effective and efficient data mining algorithms. • To address concept drift caused merely by changes of variable distributions, which we term pseudo concept drift, base models built on categorized streaming data are organized and selected in line with their corresponding variable distribution characteristics. • To address concept drift caused by changes of variable and class joint distributions, which we term true concept drift, an effective data categorization scheme is introduced. A group of working models is dynamically organized and selected for reacting to the drifting concept. Secondly, we introduce an integration stream mining framework, enabling the paradigm advocated by DDM to be widely applicable for other stream mining problems. Therefore, we are able to introduce easily six effective algorithms for mining data streams with skewed class distributions. In addition, we also introduce a new ensemble model approach for batch learning, following the same methodology. Both theoretical and empirical studies demonstrate its effectiveness. Future work would be targeted at improving the effectiveness and efficiency of the proposed algorithms. Meantime, we would explore the possibilities of using the integration framework to solve other open stream mining research problems

    Skewed Evolving Data Streams Classification with Actionable Knowledge Extraction using Data Approximation and Adaptive Classification Framework

    Get PDF
    Skewed evolving data stream (SEDS) classification is a challenging research problem for online streaming data applications. The fundamental challenges in streaming data classification are class imbalance and concept drift. However, recently, either independently or together, the two topics have received enough attention; the data redundancy while performing stream data mining and classification remains unexplored. Moreover, the existing solutions for the classification of SEDSs have focused on solving concept drift and/or class imbalance problems using the sliding window mechanism, which leads to higher computational complexity and data redundancy problems. To end this, we propose a novel Adaptive Data Stream Classification (ADSC) framework for solving the concept drift, class imbalance, and data redundancy problems with higher computational and classification efficiency. Data approximation, adaptive clustering, classification, and actionable knowledge extraction are the major phases of ADSC. For the purpose of approximating unique items in the data stream with data pre-processing during the data approximation phase, we develop the Flajolet Martin (FM) algorithm. The periodically approximated tuples are grouped into distinct classes using an adaptive clustering algorithm to address the problem of concept drift and class imbalance. In the classification phase, the supervised classifiers are employed to classify the unknown incoming data streams into either of the classes discovered by the adaptive clustering algorithm. We then extract the actionable knowledge using classified skewed evolved data stream information for the end user decision-making process. The ADSC framework is empirically assessed utilizing two streaming datasets regarding classification and computing efficiency factors. The experimental results shows the better efficiency of the proposed ADSC framework as compared with existing classification methods

    HYPA: Efficient Detection of Path Anomalies in Time Series Data on Networks

    Full text link
    The unsupervised detection of anomalies in time series data has important applications in user behavioral modeling, fraud detection, and cybersecurity. Anomaly detection has, in fact, been extensively studied in categorical sequences. However, we often have access to time series data that represent paths through networks. Examples include transaction sequences in financial networks, click streams of users in networks of cross-referenced documents, or travel itineraries in transportation networks. To reliably detect anomalies, we must account for the fact that such data contain a large number of independent observations of paths constrained by a graph topology. Moreover, the heterogeneity of real systems rules out frequency-based anomaly detection techniques, which do not account for highly skewed edge and degree statistics. To address this problem, we introduce HYPA, a novel framework for the unsupervised detection of anomalies in large corpora of variable-length temporal paths in a graph. HYPA provides an efficient analytical method to detect paths with anomalous frequencies that result from nodes being traversed in unexpected chronological order.Comment: 11 pages with 8 figures and supplementary material. To appear at SIAM Data Mining (SDM 2020

    Network Sampling: From Static to Streaming Graphs

    Full text link
    Network sampling is integral to the analysis of social, information, and biological networks. Since many real-world networks are massive in size, continuously evolving, and/or distributed in nature, the network structure is often sampled in order to facilitate study. For these reasons, a more thorough and complete understanding of network sampling is critical to support the field of network science. In this paper, we outline a framework for the general problem of network sampling, by highlighting the different objectives, population and units of interest, and classes of network sampling methods. In addition, we propose a spectrum of computational models for network sampling methods, ranging from the traditionally studied model based on the assumption of a static domain to a more challenging model that is appropriate for streaming domains. We design a family of sampling methods based on the concept of graph induction that generalize across the full spectrum of computational models (from static to streaming) while efficiently preserving many of the topological properties of the input graphs. Furthermore, we demonstrate how traditional static sampling algorithms can be modified for graph streams for each of the three main classes of sampling methods: node, edge, and topology-based sampling. Our experimental results indicate that our proposed family of sampling methods more accurately preserves the underlying properties of the graph for both static and streaming graphs. Finally, we study the impact of network sampling algorithms on the parameter estimation and performance evaluation of relational classification algorithms

    Distributed context discovering for predictive modeling

    Get PDF
    Click prediction has applications in various areas such as advertising, search and online sales. Usually user-intent information such as query terms and previous click history is used in click prediction. However, this information is not always available. For example, there are no queries from users on the webpages of content publishers, such as personal blogs. The available information for click prediction in this scenario are implicitly derived from users, such as visiting time and IP address. Thus, the existing approaches utilizing user-intent information may be inapplicable in this scenario; and the click prediction problem in this scenario remains unexplored to our knowledge. In addition, the challenges in handling skewed data streams also exist in prediction, since there is often a heavy traffic on webpages and few visitors click on them. In this thesis, we propose to use the pattern-based classification approach to tackle the click prediction problem. Attributes in webpage visits are combined by a pattern mining algorithm to enhance their power in prediction. To make the pattern-based classification handle skewed data streams, we adopt a sliding window to capture recent data, and an undersampling technique to handle the skewness. As a side problem raised by the pattern-based approach, mining patterns from large datasets is addressed by a distributed pattern sampling algorithm proposed by us. This algorithm shows its scalability in experiments. We validate our pattern-based approach in click prediction on a real-world dataset from a Dutch portal website. The experiments show our pattern-based approach can achieve an average AUC of 0.675 over a period of 36 days with a 5-day sized sliding window, which surpasses the baseline, a statically trained classification model without patterns by 0.002. Besides, the average weighted F-measure of our approach is 0.009 higher than the baseline. Therefore, our proposed approach can slightly improve classification performance; yet whether this improvement worth deployment in real scenarios remains a question. Click prediction has applications in various areas such as advertising, search and online sales. Usually user-intent information such as query terms and previous click history is used in click prediction. However, this information is not always available. For example, there are no queries from users on the webpages of content publishers, such as personal blogs. The available information for click prediction in this scenario are implicitly derived from users, such as visiting time and IP address. Thus, the existing approaches utilizing user-intent information may be inapplicable in this scenario; and the click prediction problem in this scenario remains unexplored to our knowledge. In addition, the challenges in handling skewed data streams also exist in prediction, since there is often a heavy traffic on webpages and few visitors click on them. In this thesis, we propose to use the pattern-based classification approach to tackle the click prediction problem. Attributes in webpage visits are combined by a pattern mining algorithm to enhance their power in prediction. To make the pattern-based classification handle skewed data streams, we adopt a sliding window to capture recent data, and an undersampling technique to handle the skewness. As a side problem raised by the pattern-based approach, mining patterns from large datasets is addressed by a distributed pattern sampling algorithm proposed by us. This algorithm shows its scalability in experiments. We validate our pattern-based approach in click prediction on a real-world dataset from a Dutch portal website. The experiments show our pattern-based approach can achieve an average AUC of 0.675 over a period of 36 days with a 5-day sized sliding window, which surpasses the baseline, a statically trained classification model without patterns by 0.002. Besides, the average weighted F-measure of our approach is 0.009 higher than the baseline. Therefore, our proposed approach can slightly improve classification performance; yet whether this improvement worth deployment in real scenarios remains a question

    Concept Drift Detection in Data Stream Mining: The Review of Contemporary Literature

    Get PDF
    Mining process such as classification, clustering of progressive or dynamic data is a critical objective of the information retrieval and knowledge discovery; in particular, it is more sensitive in data stream mining models due to the possibility of significant change in the type and dimensionality of the data over a period. The influence of these changes over the mining process termed as concept drift. The concept drift that depict often in streaming data causes unbalanced performance of the mining models adapted. Hence, it is obvious to boost the mining models to predict and analyse the concept drift to achieve the performance at par best. The contemporary literature evinced significant contributions to handle the concept drift, which fall in to supervised, unsupervised learning, and statistical assessment approaches. This manuscript contributes the detailed review of the contemporary concept-drift detection models depicted in recent literature. The contribution of the manuscript includes the nomenclature of the concept drift models and their impact of imbalanced data tuples

    Adaptive Online Sequential ELM for Concept Drift Tackling

    Get PDF
    A machine learning method needs to adapt to over time changes in the environment. Such changes are known as concept drift. In this paper, we propose concept drift tackling method as an enhancement of Online Sequential Extreme Learning Machine (OS-ELM) and Constructive Enhancement OS-ELM (CEOS-ELM) by adding adaptive capability for classification and regression problem. The scheme is named as adaptive OS-ELM (AOS-ELM). It is a single classifier scheme that works well to handle real drift, virtual drift, and hybrid drift. The AOS-ELM also works well for sudden drift and recurrent context change type. The scheme is a simple unified method implemented in simple lines of code. We evaluated AOS-ELM on regression and classification problem by using concept drift public data set (SEA and STAGGER) and other public data sets such as MNIST, USPS, and IDS. Experiments show that our method gives higher kappa value compared to the multiclassifier ELM ensemble. Even though AOS-ELM in practice does not need hidden nodes increase, we address some issues related to the increasing of the hidden nodes such as error condition and rank values. We propose taking the rank of the pseudoinverse matrix as an indicator parameter to detect underfitting condition.Comment: Hindawi Publishing. Computational Intelligence and Neuroscience Volume 2016 (2016), Article ID 8091267, 17 pages Received 29 January 2016, Accepted 17 May 2016. Special Issue on "Advances in Neural Networks and Hybrid-Metaheuristics: Theory, Algorithms, and Novel Engineering Applications". Academic Editor: Stefan Hauf
    • …
    corecore