6,482 research outputs found

    HYPA: Efficient Detection of Path Anomalies in Time Series Data on Networks

    Full text link
    The unsupervised detection of anomalies in time series data has important applications in user behavioral modeling, fraud detection, and cybersecurity. Anomaly detection has, in fact, been extensively studied in categorical sequences. However, we often have access to time series data that represent paths through networks. Examples include transaction sequences in financial networks, click streams of users in networks of cross-referenced documents, or travel itineraries in transportation networks. To reliably detect anomalies, we must account for the fact that such data contain a large number of independent observations of paths constrained by a graph topology. Moreover, the heterogeneity of real systems rules out frequency-based anomaly detection techniques, which do not account for highly skewed edge and degree statistics. To address this problem, we introduce HYPA, a novel framework for the unsupervised detection of anomalies in large corpora of variable-length temporal paths in a graph. HYPA provides an efficient analytical method to detect paths with anomalous frequencies that result from nodes being traversed in unexpected chronological order.Comment: 11 pages with 8 figures and supplementary material. To appear at SIAM Data Mining (SDM 2020

    Subjectively interesting connecting trees

    Get PDF

    Mining Marked Nodes in Large Graphs

    Get PDF
    abstract: With the rise of the Big Data Era, an exponential amount of network data is being generated at an unprecedented rate across a wide-range of high impact micro and macro areas of research---from protein interaction to social networks. The critical challenge is translating this large scale network data into actionable information. A key task in the data translation is the analysis of network connectivity via marked nodes---the primary focus of our research. We have developed a framework for analyzing network connectivity via marked nodes in large scale graphs, utilizing novel algorithms in three interrelated areas: (1) analysis of a single seed node via it’s ego-centric network (AttriPart algorithm); (2) pathway identification between two seed nodes (K-Simple Shortest Paths Multithreaded and Search Reduced (KSSPR) algorithm); and (3) tree detection, defining the interaction between three or more seed nodes (Shortest Path MST algorithm). In an effort to address both fundamental and applied research issues, we have developed the LocalForcasting algorithm to explore how network connectivity analysis can be applied to local community evolution and recommender systems. The goal is to apply the LocalForecasting algorithm to various domains---e.g., friend suggestions in social networks or future collaboration in co-authorship networks. This algorithm utilizes link prediction in combination with the AttriPart algorithm to predict future connections in local graph partitions. Results show that our proposed AttriPart algorithm finds up to 1.6x denser local partitions, while running approximately 43x faster than traditional local partitioning techniques (PageRank-Nibble). In addition, our LocalForecasting algorithm demonstrates a significant improvement in the number of nodes and edges correctly predicted over baseline methods. Furthermore, results for the KSSPR algorithm demonstrate a speed-up of up to 2.5x the standard k-simple shortest paths algorithm.Dissertation/ThesisMasters Thesis Computer Science 201

    Topological Analysis of Cellular Networks

    Get PDF
    • …
    corecore