1,520 research outputs found

    A taxonomy framework for unsupervised outlier detection techniques for multi-type data sets

    Get PDF
    The term "outlier" can generally be defined as an observation that is significantly different from the other values in a data set. The outliers may be instances of error or indicate events. The task of outlier detection aims at identifying such outliers in order to improve the analysis of data and further discover interesting and useful knowledge about unusual events within numerous applications domains. In this paper, we report on contemporary unsupervised outlier detection techniques for multiple types of data sets and provide a comprehensive taxonomy framework and two decision trees to select the most suitable technique based on data set. Furthermore, we highlight the advantages, disadvantages and performance issues of each class of outlier detection techniques under this taxonomy framework

    Towards outlier detection for high-dimensional data streams using projected outlier analysis strategy

    Get PDF
    [Abstract]: Outlier detection is an important research problem in data mining that aims to discover useful abnormal and irregular patterns hidden in large data sets. Most existing outlier detection methods only deal with static data with relatively low dimensionality. Recently, outlier detection for high-dimensional stream data became a new emerging research problem. A key observation that motivates this research is that outliers in high-dimensional data are projected outliers, i.e., they are embedded in lower-dimensional subspaces. Detecting projected outliers from high-dimensional stream data is a very challenging task for several reasons. First, detecting projected outliers is difficult even for high-dimensional static data. The exhaustive search for the out-lying subspaces where projected outliers are embedded is a NP problem. Second, the algorithms for handling data streams are constrained to take only one pass to process the streaming data with the conditions of space limitation and time criticality. The currently existing methods for outlier detection are found to be ineffective for detecting projected outliers in high-dimensional data streams. In this thesis, we present a new technique, called the Stream Project Outlier deTector (SPOT), which attempts to detect projected outliers in high-dimensional data streams. SPOT employs an innovative window-based time model in capturing dynamic statistics from stream data, and a novel data structure containing a set of top sparse subspaces to detect projected outliers effectively. SPOT also employs a multi-objective genetic algorithm as an effective search method for finding the outlying subspaces where most projected outliers are embedded. The experimental results demonstrate that SPOT is efficient and effective in detecting projected outliers for high-dimensional data streams. The main contribution of this thesis is that it provides a backbone in tackling the challenging problem of outlier detection for high- dimensional data streams. SPOT can facilitate the discovery of useful abnormal patterns and can be potentially applied to a variety of high demand applications, such as for sensor network data monitoring, online transaction protection, etc

    A Survey on Explainable Anomaly Detection

    Full text link
    In the past two decades, most research on anomaly detection has focused on improving the accuracy of the detection, while largely ignoring the explainability of the corresponding methods and thus leaving the explanation of outcomes to practitioners. As anomaly detection algorithms are increasingly used in safety-critical domains, providing explanations for the high-stakes decisions made in those domains has become an ethical and regulatory requirement. Therefore, this work provides a comprehensive and structured survey on state-of-the-art explainable anomaly detection techniques. We propose a taxonomy based on the main aspects that characterize each explainable anomaly detection technique, aiming to help practitioners and researchers find the explainable anomaly detection method that best suits their needs.Comment: Paper accepted by the ACM Transactions on Knowledge Discovery from Data (TKDD) for publication (preprint version

    Unsupervised Anomaly Detection of High Dimensional Data with Low Dimensional Embedded Manifold

    Get PDF
    Anomaly detection techniques are supposed to identify anomalies from loads of seemingly homogeneous data and being able to do so can lead us to timely, pivotal and actionable decisions, saving us from potential human, financial and informational loss. In anomaly detection, an often encountered situation is the absence of prior knowledge about the nature of anomalies. Such circumstances advocate for ā€˜unsupervisedā€™ learning-based anomaly detection techniques. Compared to its ā€˜supervisedā€™ counterpart, which possesses the luxury to utilize a labeled training dataset containing both normal and anomalous samples, unsupervised problems are far more difficult. Moreover, high dimensional streaming data from tons of interconnected sensors present in modern day industries makes the task more challenging. To carry out an investigative effort to address these challenges is the overarching theme of this dissertation. In this dissertation, the fundamental issue of similarity measure among observations, which is a central piece in any anomaly detection techniques, is reassessed. Manifold hypotheses suggests the possibility of low dimensional manifold structure embedded in high dimensional data. In the presence of such structured space, traditional similarity measures fail to measure the true intrinsic similarity. In light of this revelation, reevaluating the notion of similarity measure seems more pressing rather than providing incremental improvements over any of the existing techniques. A graph theoretic similarity measure is proposed to differentiate and thus identify the anomalies from normal observations. Specifically, the minimum spanning tree (MST), a graph-based approach is proposed to approximate the similarities among data points in the presence of high dimensional structured space. It can track the structure of the embedded manifold better than the existing measures and help to distinguish the anomalies from normal observations. This dissertation investigates further three different aspects of the anomaly detection problem and develops three sets of solution approaches with all of them revolving around the newly proposed MST based similarity measure. In the first part of the dissertation, a local MST (LoMST) based anomaly detection approach is proposed to detect anomalies using the data in the original space. A two-step procedure is developed to detect both cluster and point anomalies. The next two sets of methods are proposed in the subsequent two parts of the dissertation, for anomaly detection in reduced data space. In the second part of the dissertation, a neighborhood structure assisted version of the nonnegative matrix factorization approach (NS-NMF) is proposed. To detect anomalies, it uses the neighborhood information captured by a sparse MST similarity matrix along with the original attribute information. To meet the industry demands, the online version of both LoMST and NS-NMF is also developed for real-time anomaly detection. In the last part of the dissertation, a graph regularized autoencoder is proposed which uses an MST regularizer in addition to the original loss function and is thus capable of maintaining the local invariance property. All of the approaches proposed in the dissertation are tested on 20 benchmark datasets and one real-life hydropower dataset. When compared with the state of art approaches, all three approaches produce statistically significant better outcomes. ā€œIndustry 4.0ā€ is a reality now and it calls for anomaly detection techniques capable of processing a large amount of high dimensional data generated in real-time. The proposed MST based similarity measure followed by the individual techniques developed in this dissertation are equipped to tackle each of these issues and provide an effective and reliable real-time anomaly identification platform

    Classification and Anomaly Detection for Astronomical Datasets

    No full text
    This work develops two new statistical techniques for astronomical problems: a star / galaxy separator for the UKIRT Infrared Deep Sky Survey (UKIDSS) and a novel anomaly detection method for cross-matched astronomical datasets. The star / galaxy separator is a statistical classification method which outputs class membership probabilities rather than class labels and allows the use of prior knowledge about the source populations. Deep Sloan Digital Sky Survey (SDSS) data from the multiply imaged Stripe 82 region is used to check the results from our classifier, which compares favourably with the UKIDSS pipeline classification algorithm. The anomaly detection method addresses the problem posed by objects having different sets of recorded variables in cross-matched datasets. This prevents the use of methods unable to handle missing values and makes direct comparison between objects difficult. For each source, our method computes anomaly scores in subspaces of the observed feature space and combines them to an overall anomaly score. The proposed technique is very general and can easily be used in applications other than astronomy. The properties and performance of our method are investigated using both real and simulated datasets
    • ā€¦
    corecore