609 research outputs found

    The Application of Blind Source Separation to Feature Decorrelation and Normalizations

    Get PDF
    We apply a Blind Source Separation BSS algorithm to the decorrelation of Mel-warped cepstra. The observed cepstra are modeled as a convolutive mixture of independent source cepstra. The algorithm aims to minimize a cross-spectral correlation at different lags to reconstruct the source cepstra. Results show that using "independent" cepstra as features leads to a reduction in the WER.Finally, we present three different enhancements to the BSS algorithm. We also present some results of these deviations of the original algorithm

    Digital filter design using root moments for sum-of-all-pass structures from complete and partial specifications

    Get PDF
    Published versio

    Blind deconvolution of medical ultrasound images: parametric inverse filtering approach

    Get PDF
    ©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2007.910179The problem of reconstruction of ultrasound images by means of blind deconvolution has long been recognized as one of the central problems in medical ultrasound imaging. In this paper, this problem is addressed via proposing a blind deconvolution method which is innovative in several ways. In particular, the method is based on parametric inverse filtering, whose parameters are optimized using two-stage processing. At the first stage, some partial information on the point spread function is recovered. Subsequently, this information is used to explicitly constrain the spectral shape of the inverse filter. From this perspective, the proposed methodology can be viewed as a ldquohybridizationrdquo of two standard strategies in blind deconvolution, which are based on either concurrent or successive estimation of the point spread function and the image of interest. Moreover, evidence is provided that the ldquohybridrdquo approach can outperform the standard ones in a number of important practical cases. Additionally, the present study introduces a different approach to parameterizing the inverse filter. Specifically, we propose to model the inverse transfer function as a member of a principal shift-invariant subspace. It is shown that such a parameterization results in considerably more stable reconstructions as compared to standard parameterization methods. Finally, it is shown how the inverse filters designed in this way can be used to deconvolve the images in a nonblind manner so as to further improve their quality. The usefulness and practicability of all the introduced innovations are proven in a series of both in silico and in vivo experiments. Finally, it is shown that the proposed deconvolution algorithms are capable of improving the resolution of ultrasound images by factors of 2.24 or 6.52 (as judged by the autocorrelation criterion) depending on the type of regularization method used

    Frequency-Shift a way to Reduce Aliasing in the Complex Cepstrum

    Get PDF

    Blind Deconvolution of Ultrasonic Signals Using High-Order Spectral Analysis and Wavelets

    Full text link
    Defect detection by ultrasonic method is limited by the pulse width. Resolution can be improved through a deconvolution process with a priori information of the pulse or by its estimation. In this paper a regularization of the Wiener filter using wavelet shrinkage is presented for the estimation of the reflectivity function. The final result shows an improved signal to noise ratio with better axial resolution.Comment: 8 pages, CIARP 2005, LNCS 377

    Design, stability and applications of two dimensional recursive digital filters

    Get PDF
    Imperial Users onl

    High effiency small-size planar hyperbolical lenses

    Get PDF
    Planar hyperbolical lenses with an average efficiency of 85% for coupling a 40 μm wide beam into a 4 μm wide waveguide are realised. The total length required for the beam compression is 600 μm, with a lateral index contrast of 0.01. Good agreement is found between the BPM predicted and the measured lens efficiencies

    High efficiency small-size planar hyperbolical lenses

    Get PDF
    Planar hyperbolical lenses with an average efficiency of 85% for coupling a 40 mu m wide beam into a 4 mu m wide waveguide are realised. The total length required for the beam compression is 600 mu m, with a lateral index contrast of 0.01. Good agreement is found between the BPM predicted and the measured lens efficiencie
    corecore