94,144 research outputs found

    Control of the temporal and polarization response of a multimode fiber

    Full text link
    Control of the spatial and temporal properties of light propagating in disordered media have been demonstrated over the last decade using spatial light modulators. Most of the previous studies demonstrated spatial focusing to the speckle grain size, and manipulation of the temporal properties of the achieved focus. In this work, we demonstrate temporal control of the total impulse response integrated over all the spatial and polarization modes propagating through a multimode fiber. We notably demonstrate a global enhancement of light intensity at a chosen arrival time, as well as attenuating light intensity at an arbitrary delay. We also demonstrate the full polarization control of such engineered states and a multiple control at different delay times, which opens interesting perspectives for non-linear imaging through complex systems and high power fiber lasers.Comment: 10 pages including main and supplemental documents. 5 figures in the main manuscript, 4 figures in the supplementa

    Variance-constrained multiobjective control and filtering for nonlinear stochastic systems: A survey

    Get PDF
    The multiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance control theory, which serves as a practical method for multi-objective control design as well as a foundation for linear system theory, is reviewed comprehensively. The multiple design requirements frequently applied in engineering practice for the use of evaluating system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular, as a special case for the multi-objective design problems, the mixed H 2 / H ∞ control and filtering problems are reviewed in great detail. Subsequently, some latest results on the variance-constrained multi-objective control and filtering problems for the nonlinear stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out

    Distributed Apportioning in a Power Network for providing Demand Response Services

    Full text link
    Greater penetration of Distributed Energy Resources (DERs) in power networks requires coordination strategies that allow for self-adjustment of contributions in a network of DERs, owing to variability in generation and demand. In this article, a distributed scheme is proposed that enables a DER in a network to arrive at viable power reference commands that satisfies the DERs local constraints on its generation and loads it has to service, while, the aggregated behavior of multiple DERs in the network and their respective loads meet the ancillary services demanded by the grid. The Net-load Management system for a single unit is referred to as the Local Inverter System (LIS) in this article . A distinguishing feature of the proposed consensus based solution is the distributed finite time termination of the algorithm that allows each LIS unit in the network to determine power reference commands in the presence of communication delays in a distributed manner. The proposed scheme allows prioritization of Renewable Energy Sources (RES) in the network and also enables auto-adjustment of contributions from LIS units with lower priority resources (non-RES). The methods are validated using hardware-in-the-loop simulations with Raspberry PI devices as distributed control units, implementing the proposed distributed algorithm and responsible for determining and dispatching realtime power reference commands to simulated power electronics interface emulating LIS units for demand response.Comment: 7 pages, 11 Figures, IEEE International Conference on Smart Grid Communication

    Rapidly converging multichannel controllers for broadband noise and vibrations

    Get PDF
    Applications are given of a preconditioned adaptive algorithm for broadband multichannel active noise control. Based on state-space descriptions of the relevant transfer functions, the algorithm uses the inverse of the minimum-phase part of the secondary path in order to improve the speed of convergence. A further improvement of the convergence rate is obtained by using double control filters for elimination of adaptation loop delay. Regularization was found to be essential for robust operation. The particular regularization technique preserves the structure to eliminate the adaptation loop delay. Depending on the application at hand, a number of extensions are used for this algorithm, such as for applications with rapidly changing disturbance spectra, applications with large parametric uncertainty, applications with control of time-varying acoustic energy density

    Recent advances on filtering and control for nonlinear stochastic complex systems with incomplete information: A survey

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2012 Hindawi PublishingSome recent advances on the filtering and control problems for nonlinear stochastic complex systems with incomplete information are surveyed. The incomplete information under consideration mainly includes missing measurements, randomly varying sensor delays, signal quantization, sensor saturations, and signal sampling. With such incomplete information, the developments on various filtering and control issues are reviewed in great detail. In particular, the addressed nonlinear stochastic complex systems are so comprehensive that they include conventional nonlinear stochastic systems, different kinds of complex networks, and a large class of sensor networks. The corresponding filtering and control technologies for such nonlinear stochastic complex systems are then discussed. Subsequently, some latest results on the filtering and control problems for the complex systems with incomplete information are given. Finally, conclusions are drawn and several possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61104125, 61028008, 61174136, 60974030, and 61074129, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council EPSRC of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Feedback Control Goes Wireless: Guaranteed Stability over Low-power Multi-hop Networks

    Full text link
    Closing feedback loops fast and over long distances is key to emerging applications; for example, robot motion control and swarm coordination require update intervals of tens of milliseconds. Low-power wireless technology is preferred for its low cost, small form factor, and flexibility, especially if the devices support multi-hop communication. So far, however, feedback control over wireless multi-hop networks has only been shown for update intervals on the order of seconds. This paper presents a wireless embedded system that tames imperfections impairing control performance (e.g., jitter and message loss), and a control design that exploits the essential properties of this system to provably guarantee closed-loop stability for physical processes with linear time-invariant dynamics. Using experiments on a cyber-physical testbed with 20 wireless nodes and multiple cart-pole systems, we are the first to demonstrate and evaluate feedback control and coordination over wireless multi-hop networks for update intervals of 20 to 50 milliseconds.Comment: Accepted final version to appear in: 10th ACM/IEEE International Conference on Cyber-Physical Systems (with CPS-IoT Week 2019) (ICCPS '19), April 16--18, 2019, Montreal, QC, Canad

    Cooperative Adaptive Control for Cloud-Based Robotics

    Full text link
    This paper studies collaboration through the cloud in the context of cooperative adaptive control for robot manipulators. We first consider the case of multiple robots manipulating a common object through synchronous centralized update laws to identify unknown inertial parameters. Through this development, we introduce a notion of Collective Sufficient Richness, wherein parameter convergence can be enabled through teamwork in the group. The introduction of this property and the analysis of stable adaptive controllers that benefit from it constitute the main new contributions of this work. Building on this original example, we then consider decentralized update laws, time-varying network topologies, and the influence of communication delays on this process. Perhaps surprisingly, these nonidealized networked conditions inherit the same benefits of convergence being determined through collective effects for the group. Simple simulations of a planar manipulator identifying an unknown load are provided to illustrate the central idea and benefits of Collective Sufficient Richness.Comment: ICRA 201
    corecore