90 research outputs found

    Anthropometric Individualization of Head-Related Transfer Functions Analysis and Modeling

    Get PDF
    Human sound localization helps to pay attention to spatially separated speakers using interaural level and time differences as well as angle-dependent monaural spectral cues. In a monophonic teleconference, for instance, it is much more difficult to distinguish between different speakers due to missing binaural cues. Spatial positioning of the speakers by means of binaural reproduction methods using head-related transfer functions (HRTFs) enhances speech comprehension. These HRTFs are influenced by the torso, head and ear geometry as they describe the propagation path of the sound from a source to the ear canal entrance. Through this geometry-dependency, the HRTF is directional and subject-dependent. To enable a sufficient reproduction, individual HRTFs should be used. However, it is tremendously difficult to measure these HRTFs. For this reason this thesis proposes approaches to adapt the HRTFs applying individual anthropometric dimensions of a user. Since localization at low frequencies is mainly influenced by the interaural time difference, two models to adapt this difference are developed and compared with existing models. Furthermore, two approaches to adapt the spectral cues at higher frequencies are studied, improved and compared. Although the localization performance with individualized HRTFs is slightly worse than with individual HRTFs, it is nevertheless still better than with non-individual HRTFs, taking into account the measurement effort

    Mixed Structural Models for 3D Audio in Virtual Environments

    Get PDF
    In the world of ICT, strategies for innovation and development are increasingly focusing on applications that require spatial representation and real-time interaction with and within 3D media environments. One of the major challenges that such applications have to address is user-centricity, reflecting e.g. on developing complexity-hiding services so that people can personalize their own delivery of services. In these terms, multimodal interfaces represent a key factor for enabling an inclusive use of the new technology by everyone. In order to achieve this, multimodal realistic models that describe our environment are needed, and in particular models that accurately describe the acoustics of the environment and communication through the auditory modality. Examples of currently active research directions and application areas include 3DTV and future internet, 3D visual-sound scene coding, transmission and reconstruction and teleconferencing systems, to name but a few. The concurrent presence of multimodal senses and activities make multimodal virtual environments potentially flexible and adaptive, allowing users to switch between modalities as needed during the continuously changing conditions of use situation. Augmentation through additional modalities and sensory substitution techniques are compelling ingredients for presenting information non-visually, when the visual bandwidth is overloaded, when data are visually occluded, or when the visual channel is not available to the user (e.g., for visually impaired people). Multimodal systems for the representation of spatial information will largely benefit from the implementation of audio engines that have extensive knowledge of spatial hearing and virtual acoustics. Models for spatial audio can provide accurate dynamic information about the relation between the sound source and the surrounding environment, including the listener and his/her body which acts as an additional filter. Indeed, this information cannot be substituted by any other modality (i.e., visual or tactile). Nevertheless, today's spatial representation of audio within sonification tends to be simplistic and with poor interaction capabilities, being multimedia systems currently focused on graphics processing mostly, and integrated with simple stereo or multi-channel surround-sound. On a much different level lie binaural rendering approaches based on headphone reproduction, taking into account that possible disadvantages (e.g. invasiveness, non-flat frequency responses) are counterbalanced by a number of desirable features. Indeed, these systems might control and/or eliminate reverberation and other acoustic effects of the real listening space, reduce background noise, and provide adaptable and portable audio displays, which are all relevant aspects especially in enhanced contexts. Most of the binaural sound rendering techniques currently exploited in research rely on the use of Head-Related Transfer Functions (HRTFs), i.e. peculiar filters that capture the acoustic effects of the human head and ears. HRTFs allow loyal simulation of the audio signal that arrives at the entrance of the ear canal as a function of the sound source's spatial position. HRTF filters are usually presented under the form of acoustic signals acquired on dummy heads built according to mean anthropometric measurements. Nevertheless, anthropometric features of the human body have a key role in HRTF shaping: several studies have attested how listening to non-individual binaural sounds results in evident localization errors. On the other hand, individual HRTF measurements on a significant number of subjects result both time- and resource-expensive. Several techniques for synthetic HRTF design have been proposed during the last two decades and the most promising one relies on structural HRTF models. In this revolutionary approach, the most important effects involved in spatial sound perception (acoustic delays and shadowing due to head diffraction, reflections on pinna contours and shoulders, resonances inside the ear cavities) are isolated and modeled separately with a corresponding filtering element. HRTF selection and modeling procedures can be determined by physical interpretation: parameters of each rendering blocks or selection criteria can be estimated from real and simulated data and related to anthropometric geometries. Effective personal auditory displays represent an innovative breakthrough for a plethora of applications and structural approach can also allow for effective scalability depending on the available computational resources or bandwidth. Scenes with multiple highly realistic audiovisual objects are easily managed exploiting parallelism of increasingly ubiquitous GPUs (Graphics Processing Units). Building individual headphone equalization with perceptually robust inverse filtering techniques represents a fundamental step towards the creation of personal virtual auditory displays (VADs). To this regard, several examples might benefit from these considerations: multi-channel downmix over headphones, personal cinema, spatial audio rendering in mobile devices, computer-game engines and individual binaural audio standards for movie and music production. This thesis presents a family of approaches that overcome the current limitations of headphone-based 3D audio systems, aiming at building personal auditory displays through structural binaural audio models for an immersive sound reproduction. The resulting models allow for an interesting form of content adaptation and personalization, since they include parameters related to the user's anthropometry in addition to those related to the sound sources and the environment. The covered research directions converge to a novel framework for synthetic HRTF design and customization that combines the structural modeling paradigm with other HRTF selection techniques (inspired by non-individualized HRTF selection procedures) and represents the main novel contribution of this thesis: the Mixed Structural Modeling (MSM) approach considers the global HRTF as a combination of structural components, which can be chosen to be either synthetic or recorded components. In both cases, customization is based on individual anthropometric data, which are used to either fit the model parameters or to select a measured/simulated component within a set of available responses. The definition and experimental validation of the MSM approach addresses several pivotal issues towards the acquisition and delivery of binaural sound scenes and designing guidelines for personalized 3D audio virtual environments holding the potential of novel forms of customized communication and interaction with sound and music content. The thesis also presents a multimodal interactive system which is used to conduct subjective test on multi-sensory integration in virtual environments. Four experimental scenarios are proposed in order to test the capabilities of auditory feedback jointly to tactile or visual modalities. 3D audio feedback related to user’s movements during simple target following tasks is tested as an applicative example of audio-visual rehabilitation system. Perception of direction of footstep sounds interactively generated during walking and provided through headphones highlights how spatial information can clarify the semantic congruence between movement and multimodal feedback. A real time, physically informed audio-tactile interactive system encodes spatial information in the context of virtual map presentation with particular attention to orientation and mobility (O&M) learning processes addressed to visually impaired people. Finally, an experiment analyzes the haptic estimation of size of a virtual 3D object (a stair-step) whereas the exploration is accompanied by a real-time generated auditory feedback whose parameters vary as a function of the height of the interaction point. The collected data from these experiments suggest that well-designed multimodal feedback, exploiting 3D audio models, can definitely be used to improve performance in virtual reality and learning processes in orientation and complex motor tasks, thanks to the high level of attention, engagement, and presence provided to the user. The research framework, based on the MSM approach, serves as an important evaluation tool with the aim of progressively determining the relevant spatial attributes of sound for each application domain. In this perspective, such studies represent a novelty in the current literature on virtual and augmented reality, especially concerning the use of sonification techniques in several aspects of spatial cognition and internal multisensory representation of the body. This thesis is organized as follows. An overview of spatial hearing and binaural technology through headphones is given in Chapter 1. Chapter 2 is devoted to the Mixed Structural Modeling formalism and philosophy. In Chapter 3, topics in structural modeling for each body component are studied, previous research and two new models, i.e. near-field distance dependency and external-ear spectral cue, are presented. Chapter 4 deals with a complete case study of the mixed structural modeling approach and provides insights about the main innovative aspects of such modus operandi. Chapter 5 gives an overview of number of a number of proposed tools for the analysis and synthesis of HRTFs. System architectural guidelines and constraints are discussed in terms of real-time issues, mobility requirements and customized audio delivery. In Chapter 6, two case studies investigate the behavioral importance of spatial attribute of sound and how continuous interaction with virtual environments can benefit from using spatial audio algorithms. Chapter 7 describes a set of experiments aimed at assessing the contribution of binaural audio through headphones in learning processes of spatial cognitive maps and exploration of virtual objects. Finally, conclusions are drawn and new research horizons for further work are exposed in Chapter 8

    Structural Modeling of Pinna-Related Transfer Functions for 3-D Sound Rendering

    Get PDF
    This paper considers the general problem of modeling pinna-related transfer functions (PRTFs) for 3-D sound rendering. Following a structural approach, we present an algorithm for the decomposition of PRTFs into ear resonances and frequency notches due to reflections over pinna cavities and exploit it in order to deliver a method to extract the frequencies of the most important spectral notches. Ray-tracing analysis reveals a convincing correspondence between extracted frequencies and pinna cavities of a bunch of subjects. We then propose a model for PRTF synthesis which allows to control separately the evolution of resonances and spectral notches through the design of two distinct filter blocks. The resulting model is suitable for future integration into a structural head-related transfer function model, and for parametrization over anthropometrical measurements of a wide range of subjects

    Modeling HRTF for Sound Localization in Normal Listeners and Bilateral Cochlear Implant Users

    Get PDF
    Mathematical models can be very useful for understanding complicated systems and for testing algorithms through simulation that would be difficult or expensive to implement. This dissertation presents a model that attempts to simulate the sound localization performance of persons using bilateral cochlear implants. The expectation is that this model could prove to be a useful tool in developing new signal processing algorithms for neural encoding strategies. The head related transfer function (HRTF) is a critical component of this model, and in the ideal case, provides the base characteristics of head shadow, torso and pinna effects. This defines the temporal, intensity and spectral cues that are important to sound localization. By building on the HRTF, a sound source localization model can be constructed. This model was first developed to simulate normal hearing persons and validated against published literature on HRTFs and localization. The model was then further developed to account for the differences in the signal pathway of the cochlear implant (CI) user due to sound processing effects, and the microphone location versus pinna and ear canal acoustics. Finally, the localization error calculated from the model for cochlear implant users was compared to published localization data obtained from these hearing impaired patients in order to validate the modified model. Results of the normal hearing model correlated closely with localization performance data published in the literature, with localization error of the model only slightly greater than that of normal hearing subjects. The cochlear implant population has a more broadly distributed range of localization error than that of the normal hearing population, and in addition, the mean error is significantly poorer. The performance of the cochlear implant model fell within the range of error reported in the research literature for cochlear implant users. This close correspondence with the published performance data suggests that the model developed in this dissertation provides a reasonably good approximation of sound source localization for normal hearing subject and persons with bilateral cochlear implants

    Head-Related Transfer Functions and Virtual Auditory Display

    Get PDF

    Optimization and improvements in spatial sound reproduction systems through perceptual considerations

    Full text link
    [ES] La reproducción de las propiedades espaciales del sonido es una cuestión cada vez más importante en muchas aplicaciones inmersivas emergentes. Ya sea en la reproducción de contenido audiovisual en entornos domésticos o en cines, en sistemas de videoconferencia inmersiva o en sistemas de realidad virtual o aumentada, el sonido espacial es crucial para una sensación de inmersión realista. La audición, más allá de la física del sonido, es un fenómeno perceptual influenciado por procesos cognitivos. El objetivo de esta tesis es contribuir con nuevos métodos y conocimiento a la optimización y simplificación de los sistemas de sonido espacial, desde un enfoque perceptual de la experiencia auditiva. Este trabajo trata en una primera parte algunos aspectos particulares relacionados con la reproducción espacial binaural del sonido, como son la escucha con auriculares y la personalización de la Función de Transferencia Relacionada con la Cabeza (Head Related Transfer Function - HRTF). Se ha realizado un estudio sobre la influencia de los auriculares en la percepción de la impresión espacial y la calidad, con especial atención a los efectos de la ecualización y la consiguiente distorsión no lineal. Con respecto a la individualización de la HRTF se presenta una implementación completa de un sistema de medida de HRTF y se introduce un nuevo método para la medida de HRTF en salas no anecoicas. Además, se han realizado dos experimentos diferentes y complementarios que han dado como resultado dos herramientas que pueden ser utilizadas en procesos de individualización de la HRTF, un modelo paramétrico del módulo de la HRTF y un ajuste por escalado de la Diferencia de Tiempo Interaural (Interaural Time Difference - ITD). En una segunda parte sobre reproducción con altavoces, se han evaluado distintas técnicas como la Síntesis de Campo de Ondas (Wave-Field Synthesis - WFS) o la panoramización por amplitud. Con experimentos perceptuales se han estudiado la capacidad de estos sistemas para producir sensación de distancia y la agudeza espacial con la que podemos percibir las fuentes sonoras si se dividen espectralmente y se reproducen en diferentes posiciones. Las aportaciones de esta investigación pretenden hacer más accesibles estas tecnologías al público en general, dada la demanda de experiencias y dispositivos audiovisuales que proporcionen mayor inmersión.[CA] La reproducció de les propietats espacials del so és una qüestió cada vegada més important en moltes aplicacions immersives emergents. Ja siga en la reproducció de contingut audiovisual en entorns domèstics o en cines, en sistemes de videoconferència immersius o en sistemes de realitat virtual o augmentada, el so espacial és crucial per a una sensació d'immersió realista. L'audició, més enllà de la física del so, és un fenomen perceptual influenciat per processos cognitius. L'objectiu d'aquesta tesi és contribuir a l'optimització i simplificació dels sistemes de so espacial amb nous mètodes i coneixement, des d'un criteri perceptual de l'experiència auditiva. Aquest treball tracta, en una primera part, alguns aspectes particulars relacionats amb la reproducció espacial binaural del so, com són l'audició amb auriculars i la personalització de la Funció de Transferència Relacionada amb el Cap (Head Related Transfer Function - HRTF). S'ha realitzat un estudi relacionat amb la influència dels auriculars en la percepció de la impressió espacial i la qualitat, dedicant especial atenció als efectes de l'equalització i la consegüent distorsió no lineal. Respecte a la individualització de la HRTF, es presenta una implementació completa d'un sistema de mesura de HRTF i s'inclou un nou mètode per a la mesura de HRTF en sales no anecoiques. A mès, s'han realitzat dos experiments diferents i complementaris que han donat com a resultat dues eines que poden ser utilitzades en processos d'individualització de la HRTF, un model paramètric del mòdul de la HRTF i un ajustament per escala de la Diferencià del Temps Interaural (Interaural Time Difference - ITD). En una segona part relacionada amb la reproducció amb altaveus, s'han avaluat distintes tècniques com la Síntesi de Camp d'Ones (Wave-Field Synthesis - WFS) o la panoramització per amplitud. Amb experiments perceptuals, s'ha estudiat la capacitat d'aquests sistemes per a produir una sensació de distància i l'agudesa espacial amb que podem percebre les fonts sonores, si es divideixen espectralment i es reprodueixen en diferents posicions. Les aportacions d'aquesta investigació volen fer més accessibles aquestes tecnologies al públic en general, degut a la demanda d'experiències i dispositius audiovisuals que proporcionen major immersió.[EN] The reproduction of the spatial properties of sound is an increasingly important concern in many emerging immersive applications. Whether it is the reproduction of audiovisual content in home environments or in cinemas, immersive video conferencing systems or virtual or augmented reality systems, spatial sound is crucial for a realistic sense of immersion. Hearing, beyond the physics of sound, is a perceptual phenomenon influenced by cognitive processes. The objective of this thesis is to contribute with new methods and knowledge to the optimization and simplification of spatial sound systems, from a perceptual approach to the hearing experience. This dissertation deals in a first part with some particular aspects related to the binaural spatial reproduction of sound, such as listening with headphones and the customization of the Head Related Transfer Function (HRTF). A study has been carried out on the influence of headphones on the perception of spatial impression and quality, with particular attention to the effects of equalization and subsequent non-linear distortion. With regard to the individualization of the HRTF a complete implementation of a HRTF measurement system is presented, and a new method for the measurement of HRTF in non-anechoic conditions is introduced. In addition, two different and complementary experiments have been carried out resulting in two tools that can be used in HRTF individualization processes, a parametric model of the HRTF magnitude and an Interaural Time Difference (ITD) scaling adjustment. In a second part concerning loudspeaker reproduction, different techniques such as Wave-Field Synthesis (WFS) or amplitude panning have been evaluated. With perceptual experiments it has been studied the capacity of these systems to produce a sensation of distance, and the spatial acuity with which we can perceive the sound sources if they are spectrally split and reproduced in different positions. The contributions of this research are intended to make these technologies more accessible to the general public, given the demand for audiovisual experiences and devices with increasing immersion.Gutiérrez Parera, P. (2020). Optimization and improvements in spatial sound reproduction systems through perceptual considerations [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/142696TESI

    Human sound localisation cues and their relation to morphology

    Get PDF
    Binaural soundfield reproduction has the potential to create realistic threedimensional sound scenes using only a pair of normal headphones. Possible applications for binaural audio abound in, for example, the music, mobile communications and games industries. A problem exists, however, in that the head-related transfer functions (HRTFs) which inform our spatial perception of sound are affected by variations in human morphology, particularly in the shape of the external ear. It has been observed that HRTFs simply based on some kind of average head shape generally result in poor elevation perception, weak externalisation and spectrally distorted sound images. Hence, HRTFs are needed which accommodate these individual differences. Direct acoustic measurement and acoustic simulations based on morphological measurements are obvious means of obtaining individualised HRTFs, but both methods suffer from high cost and practical difficulties. The lack of a viable measurement method is currently hindering the widespread adoption of binaural technologies. There have been many attempts to estimate individualised HTRFs effectively and cheaply using easily obtainable morphological descriptors, but due to an inadequate understanding of the complex acoustic effects created in particular by the external ear, success has been limited. The work presented in this thesis strengthens current understanding in several ways and provides a promising route towards improved HRTF estimation. The way HRTFs vary as a function of direction is compared with localisation acuity to help pinpoint spectral features which contribute to spatial perception. 50 subjects have been scanned using magnetic resonance imaging to capture their head and pinna morphologies, and HRTFs for the same group have been measured acoustically. To make analysis of this extensive data tractable, and so reveal the mapping between the morphological and acoustic domains, a parametric method for efficiently describing head morphology has been developed. Finally, a novel technique, referred to as morphoacoustic perturbation analysis (MPA), is described. We demonstrate how MPA allows the morphological origin of a variety of HRTF spectral features to be identified

    Current Use and Future Perspectives of Spatial Audio Technologies in Electronic Travel Aids

    Get PDF
    Electronic travel aids (ETAs) have been in focus since technology allowed designing relatively small, light, and mobile devices for assisting the visually impaired. Since visually impaired persons rely on spatial audio cues as their primary sense of orientation, providing an accurate virtual auditory representation of the environment is essential. This paper gives an overview of the current state of spatial audio technologies that can be incorporated in ETAs, with a focus on user requirements. Most currently available ETAs either fail to address user requirements or underestimate the potential of spatial sound itself, which may explain, among other reasons, why no single ETA has gained a widespread acceptance in the blind community. We believe there is ample space for applying the technologies presented in this paper, with the aim of progressively bridging the gap between accessibility and accuracy of spatial audio in ETAs.This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement no. 643636.Peer Reviewe
    corecore