14,388 research outputs found

    Fat Polygonal Partitions with Applications to Visualization and Embeddings

    Get PDF
    Let T\mathcal{T} be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T\mathcal{T} is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high. We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes. We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in Rd\mathbb{R}^d. We use these partitions with slack for embedding ultrametrics into dd-dimensional Euclidean space: we give a polylog(Δ)\mathop{\rm polylog}(\Delta)-approximation algorithm for embedding nn-point ultrametrics into Rd\mathbb{R}^d with minimum distortion, where Δ\Delta denotes the spread of the metric, i.e., the ratio between the largest and the smallest distance between two points. The previously best-known approximation ratio for this problem was polynomial in nn. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.Comment: 26 page

    Fixed-Parameter Algorithms for Rectilinear Steiner tree and Rectilinear Traveling Salesman Problem in the plane

    Full text link
    Given a set PP of nn points with their pairwise distances, the traveling salesman problem (TSP) asks for a shortest tour that visits each point exactly once. A TSP instance is rectilinear when the points lie in the plane and the distance considered between two points is the l1l_1 distance. In this paper, a fixed-parameter algorithm for the Rectilinear TSP is presented and relies on techniques for solving TSP on bounded-treewidth graphs. It proves that the problem can be solved in O(nh7h)O\left(nh7^h\right) where h≤nh \leq n denotes the number of horizontal lines containing the points of PP. The same technique can be directly applied to the problem of finding a shortest rectilinear Steiner tree that interconnects the points of PP providing a O(nh5h)O\left(nh5^h\right) time complexity. Both bounds improve over the best time bounds known for these problems.Comment: 24 pages, 13 figures, 6 table

    On the Duality of Semiantichains and Unichain Coverings

    Full text link
    We study a min-max relation conjectured by Saks and West: For any two posets PP and QQ the size of a maximum semiantichain and the size of a minimum unichain covering in the product PĂ—QP\times Q are equal. For positive we state conditions on PP and QQ that imply the min-max relation. Based on these conditions we identify some new families of posets where the conjecture holds and get easy proofs for several instances where the conjecture had been verified before. However, we also have examples showing that in general the min-max relation is false, i.e., we disprove the Saks-West conjecture.Comment: 10 pages, 3 figure

    Move-minimizing puzzles, diamond-colored modular and distributive lattices, and poset models for Weyl group symmetric functions

    Full text link
    The move-minimizing puzzles presented here are certain types of one-player combinatorial games that are shown to have explicit solutions whenever they can be encoded in a certain way as diamond-colored modular and distributive lattices. Such lattices can also arise naturally as models for certain algebraic objects, namely Weyl group symmetric functions and their companion semisimple Lie algebra representations. The motivation for this paper is therefore both diversional and algebraic: To show how some recreational move-minimizing puzzles can be solved explicitly within an order-theoretic context and also to realize some such puzzles as combinatorial models for symmetric functions associated with certain fundamental representations of the symplectic and odd orthogonal Lie algebras
    • …
    corecore