13,617 research outputs found

    WebWave: Globally Load Balanced Fully Distributed Caching of Hot Published Documents

    Full text link
    Document publication service over such a large network as the Internet challenges us to harness available server and network resources to meet fast growing demand. In this paper, we show that large-scale dynamic caching can be employed to globally minimize server idle time, and hence maximize the aggregate server throughput of the whole service. To be efficient, scalable and robust, a successful caching mechanism must have three properties: (1) maximize the global throughput of the system, (2) find cache copies without recourse to a directory service, or to a discovery protocol, and (3) be completely distributed in the sense of operating only on the basis of local information. In this paper, we develop a precise definition, which we call tree load-balance (TLB), of what it means for a mechanism to satisfy these three goals. We present an algorithm that computes TLB off-line, and a distributed protocol that induces a load distribution that converges quickly to a TLB one. Both algorithms place cache copies of immutable documents, on the routing tree that connects the cached document's home server to its clients, thus enabling requests to stumble on cache copies en route to the home server.Harvard University; The Saudi Cultural Mission to the U.S.A

    Peer to Peer Information Retrieval: An Overview

    Get PDF
    Peer-to-peer technology is widely used for file sharing. In the past decade a number of prototype peer-to-peer information retrieval systems have been developed. Unfortunately, none of these have seen widespread real- world adoption and thus, in contrast with file sharing, information retrieval is still dominated by centralised solutions. In this paper we provide an overview of the key challenges for peer-to-peer information retrieval and the work done so far. We want to stimulate and inspire further research to overcome these challenges. This will open the door to the development and large-scale deployment of real-world peer-to-peer information retrieval systems that rival existing centralised client-server solutions in terms of scalability, performance, user satisfaction and freedom

    Comprehensive characterization of an open source document search engine

    Get PDF
    This work performs a thorough characterization and analysis of the open source Lucene search library. The article describes in detail the architecture, functionality, and micro-architectural behavior of the search engine, and investigates prominent online document search research issues. In particular, we study how intra-server index partitioning affects the response time and throughput, explore the potential use of low power servers for document search, and examine the sources of performance degradation ands the causes of tail latencies. Some of our main conclusions are the following: (a) intra-server index partitioning can reduce tail latencies but with diminishing benefits as incoming query traffic increases, (b) low power servers given enough partitioning can provide same average and tail response times as conventional high performance servers, (c) index search is a CPU-intensive cache-friendly application, and (d) C-states are the main culprits for performance degradation in document search.Web of Science162art. no. 1

    Document distribution algorithm for load balancing on an extensible Web server architecture

    Get PDF
    Access latency and load balancing are the two main issues in the design of clustered Web server architecture for achieving high performance. We propose a novel document distribution algorithm for load balancing on a cluster of distributed Web servers. We group Web pages that are likely to be accessed during a request session into a migrating unit, which is used as the basic unit of document placement. A modified binning algorithm is developed to distribute the migrating units among the Web servers to fulfil the load balancing. We also present a redirection mechanism, which makes use of a migrating unit's property, to reduce the cost of request redirections. The distribution of Web documents would be recomputed periodically to adapt to the changes in client request patterns and system configuration. Simulation results show that our solution can reduce the amount of request redirection and document migration, and it can distribute workload properly among Web servers.published_or_final_versio
    corecore