22,557 research outputs found

    Closed-Loop Statistical Verification of Stochastic Nonlinear Systems Subject to Parametric Uncertainties

    Full text link
    This paper proposes a statistical verification framework using Gaussian processes (GPs) for simulation-based verification of stochastic nonlinear systems with parametric uncertainties. Given a small number of stochastic simulations, the proposed framework constructs a GP regression model and predicts the system's performance over the entire set of possible uncertainties. Included in the framework is a new metric to estimate the confidence in those predictions based on the variance of the GP's cumulative distribution function. This variance-based metric forms the basis of active sampling algorithms that aim to minimize prediction error through careful selection of simulations. In three case studies, the new active sampling algorithms demonstrate up to a 35% improvement in prediction error over other approaches and are able to correctly identify regions with low prediction confidence through the variance metric.Comment: 8 pages, submitted to ACC 201

    The role of learning on industrial simulation design and analysis

    Full text link
    The capability of modeling real-world system operations has turned simulation into an indispensable problemsolving methodology for business system design and analysis. Today, simulation supports decisions ranging from sourcing to operations to finance, starting at the strategic level and proceeding towards tactical and operational levels of decision-making. In such a dynamic setting, the practice of simulation goes beyond being a static problem-solving exercise and requires integration with learning. This article discusses the role of learning in simulation design and analysis motivated by the needs of industrial problems and describes how selected tools of statistical learning can be utilized for this purpose

    Online Predictive Optimization Framework for Stochastic Demand-Responsive Transit Services

    Full text link
    This study develops an online predictive optimization framework for dynamically operating a transit service in an area of crowd movements. The proposed framework integrates demand prediction and supply optimization to periodically redesign the service routes based on recently observed demand. To predict demand for the service, we use Quantile Regression to estimate the marginal distribution of movement counts between each pair of serviced locations. The framework then combines these marginals into a joint demand distribution by constructing a Gaussian copula, which captures the structure of correlation between the marginals. For supply optimization, we devise a linear programming model, which simultaneously determines the route structure and the service frequency according to the predicted demand. Importantly, our framework both preserves the uncertainty structure of future demand and leverages this for robust route optimization, while keeping both components decoupled. We evaluate our framework using a real-world case study of autonomous mobility in a university campus in Denmark. The results show that our framework often obtains the ground truth optimal solution, and can outperform conventional methods for route optimization, which do not leverage full predictive distributions.Comment: 34 pages, 12 figures, 5 table

    Scalable Approach to Uncertainty Quantification and Robust Design of Interconnected Dynamical Systems

    Full text link
    Development of robust dynamical systems and networks such as autonomous aircraft systems capable of accomplishing complex missions faces challenges due to the dynamically evolving uncertainties coming from model uncertainties, necessity to operate in a hostile cluttered urban environment, and the distributed and dynamic nature of the communication and computation resources. Model-based robust design is difficult because of the complexity of the hybrid dynamic models including continuous vehicle dynamics, the discrete models of computations and communications, and the size of the problem. We will overview recent advances in methodology and tools to model, analyze, and design robust autonomous aerospace systems operating in uncertain environment, with stress on efficient uncertainty quantification and robust design using the case studies of the mission including model-based target tracking and search, and trajectory planning in uncertain urban environment. To show that the methodology is generally applicable to uncertain dynamical systems, we will also show examples of application of the new methods to efficient uncertainty quantification of energy usage in buildings, and stability assessment of interconnected power networks

    Motion Planning of Uncertain Ordinary Differential Equation Systems

    Get PDF
    This work presents a novel motion planning framework, rooted in nonlinear programming theory, that treats uncertain fully and under-actuated dynamical systems described by ordinary differential equations. Uncertainty in multibody dynamical systems comes from various sources, such as: system parameters, initial conditions, sensor and actuator noise, and external forcing. Treatment of uncertainty in design is of paramount practical importance because all real-life systems are affected by it, and poor robustness and suboptimal performance result if it’s not accounted for in a given design. In this work uncertainties are modeled using Generalized Polynomial Chaos and are solved quantitatively using a least-square collocation method. The computational efficiency of this approach enables the inclusion of uncertainty statistics in the nonlinear programming optimization process. As such, the proposed framework allows the user to pose, and answer, new design questions related to uncertain dynamical systems. Specifically, the new framework is explained in the context of forward, inverse, and hybrid dynamics formulations. The forward dynamics formulation, applicable to both fully and under-actuated systems, prescribes deterministic actuator inputs which yield uncertain state trajectories. The inverse dynamics formulation is the dual to the forward dynamic, and is only applicable to fully-actuated systems; deterministic state trajectories are prescribed and yield uncertain actuator inputs. The inverse dynamics formulation is more computationally efficient as it requires only algebraic evaluations and completely avoids numerical integration. Finally, the hybrid dynamics formulation is applicable to under-actuated systems where it leverages the benefits of inverse dynamics for actuated joints and forward dynamics for unactuated joints; it prescribes actuated state and unactuated input trajectories which yield uncertain unactuated states and actuated inputs. The benefits of the ability to quantify uncertainty when planning the motion of multibody dynamic systems are illustrated through several case-studies. The resulting designs determine optimal motion plans—subject to deterministic and statistical constraints—for all possible systems within the probability space

    Optimal Event-Driven Multi-Agent Persistent Monitoring of a Finite Set of Targets

    Full text link
    We consider the problem of controlling the movement of multiple cooperating agents so as to minimize an uncertainty metric associated with a finite number of targets. In a one-dimensional mission space, we adopt an optimal control framework and show that the solution is reduced to a simpler parametric optimization problem: determining a sequence of locations where each agent may dwell for a finite amount of time and then switch direction. This amounts to a hybrid system which we analyze using Infinitesimal Perturbation Analysis (IPA) to obtain a complete on-line solution through an event-driven gradient-based algorithm which is also robust with respect to the uncertainty model used. The resulting controller depends on observing the events required to excite the gradient-based algorithm, which cannot be guaranteed. We solve this problem by proposing a new metric for the objective function which creates a potential field guaranteeing that gradient values are non-zero. This approach is compared to an alternative graph-based task scheduling algorithm for determining an optimal sequence of target visits. Simulation examples are included to demonstrate the proposed methods.Comment: 12 pages full version, IEEE Conference on Decision and Control, 201
    • …
    corecore