4,841 research outputs found

    Minimum redundancy array structure for interference cancellation

    Get PDF
    Adaptive antenna arrays are widely used in many advanced radar, sonar, and communication systems because of their effectiveness in cancelling intentional or unintentional interferers. A uniformly spaced linear array, referred to as a Uniform Regular Array (URA), is the usual structure used for interference cancellation. The Minimum Redundancy Array (MRA) structure proposed in this work is a special kind of thinned array whose application was limited in the past to direction finding. MRAs with the same number of array elements can resolve directions of much more closely spaced signals than URAs. The URA structure is customarily utilized for interference cancellation, and the Minimum Noise Variance (MNV) criterion is a common performance measure for deriving optimum weights, provided that the desired signal is absent during adaptation. The MNV criterion is to minimize the combined sum of the interference and background noise power. Another approach to interference cancellation using the URA structure is the eigencanceling method. This method, which is based on the eigenstructure of the spatial autocorrelation matrix, when compared to the conventional beamforming method, has the following advantages: 1) deeper interference cancellation 2) independence of the interfers\u27 power, and 3) faster optimum weight convergence. In this work, both the conventional beamforming and eigencanceling methods were applied to the MRA structure and investigated analytically. Performance of the MRAs were studied and compared to that of the URAs. For uncorrelated interferers, the cancellation depth of the MRA in the main beam region was almost the same as that of the URA with the same aperture and many more elements. When the eigencanceling technique was applied, it was found that the convergence rate of the MRA was about four times faster than that of the URA. This work also contains other topics, such as the relation between the eigenspaces of the MRA structure and its corresponding URA. Preliminary results on planar MRA structures are also included. For an array application with a large aperture requirement in terms of the number of array elements, the MRA proved to be a much better choice than the URA in achieving interference cancellation

    Volumetric diffusers : pseudorandom cylinder arrays on a periodic lattice

    Get PDF
    Most conventional diffusers take the form of a surface based treatment, and as a result can only operate in hemispherical space. Placing a diffuser in the volume of a room might provide greater efficiency by allowing scattering into the whole space. A periodic cylinder array (or sonic crystal) produces periodicity lobes and uneven scattering. Introducing defects into an array, by removing or varying the size of some of the cylinders, can enhance their diffusing abilities. This paper applies number theoretic concepts to create cylinder arrays that have more even scattering. Predictions using a Boundary Element Method are compared to measurements to verify the model, and suitable metrics are adopted to evaluate performance. Arrangements with good aperiodic autocorrelation properties tend to produce the best results. At low frequency power is controlled by object size and at high frequency diffusion is dominated by lattice spacing and structural similarity. Consequently the operational bandwidth is rather small. By using sparse arrays and varying cylinder sizes, a wider bandwidth can be achieved

    Interference Cancellation at the Relay for Multi-User Wireless Cooperative Networks

    Full text link
    We study multi-user transmission and detection schemes for a multi-access relay network (MARN) with linear constraints at all nodes. In a (J,Ja,Ra,M)(J, J_a, R_a, M) MARN, JJ sources, each equipped with JaJ_a antennas, communicate to one MM-antenna destination through one RaR_a-antenna relay. A new protocol called IC-Relay-TDMA is proposed which takes two phases. During the first phase, symbols of different sources are transmitted concurrently to the relay. At the relay, interference cancellation (IC) techniques, previously proposed for systems with direct transmission, are applied to decouple the information of different sources without decoding. During the second phase, symbols of different sources are forwarded to the destination in a time division multi-access (TDMA) fashion. At the destination, the maximum-likelihood (ML) decoding is performed source-by-source. The protocol of IC-Relay-TDMA requires the number of relay antennas no less than the number of sources, i.e., Raβ‰₯JR_a\ge J. Through outage analysis, the achievable diversity gain of the proposed scheme is shown to be min⁑{Ja(Raβˆ’J+1),RaM}\min\{J_a(R_a-J+1),R_aM\}. When {\smallM≀Ja(1βˆ’Jβˆ’1Ra)M\le J_a\left(1-\frac{J-1}{R_a}\right)}, the proposed scheme achieves the maximum interference-free (int-free) diversity gain RaMR_aM. Since concurrent transmission is allowed during the first phase, compared to full TDMA transmission, the proposed scheme achieves the same diversity, but with a higher symbol rate.Comment: submitted to IEEE Transaction on Wireless Communicatio

    Uplink CoMP under a Constrained Backhaul and Imperfect Channel Knowledge

    Full text link
    Coordinated Multi-Point (CoMP) is known to be a key technology for next generation mobile communications systems, as it allows to overcome the burden of inter-cell interference. Especially in the uplink, it is likely that interference exploitation schemes will be used in the near future, as they can be used with legacy terminals and require no or little changes in standardization. Major drawbacks, however, are the extent of additional backhaul infrastructure needed, and the sensitivity to imperfect channel knowledge. This paper jointly addresses both issues in a new framework incorporating a multitude of proposed theoretical uplink CoMP concepts, which are then put into perspective with practical CoMP algorithms. This comprehensive analysis provides new insight into the potential usage of uplink CoMP in next generation wireless communications systems.Comment: Submitted to IEEE Transactions on Wireless Communications in February 201

    Digital Signal Processing Research Program

    Get PDF
    Contains table of contents for Section 2, an introduction, reports on sixteen research projects and a list of publications.Bose CorporationMIT-Woods Hole Oceanographic Institution Joint Graduate Program in Oceanographic EngineeringAdvanced Research Projects Agency/U.S. Navy - Office of Naval Research Grant N00014-93-1-0686Lockheed Sanders, Inc./U.S. Navy - Office of Naval Research Contract N00014-91-C-0125U.S. Air Force - Office of Scientific Research Grant AFOSR-91-0034AT&T Laboratories Doctoral Support ProgramAdvanced Research Projects Agency/U.S. Navy - Office of Naval Research Grant N00014-89-J-1489U.S. Navy - Office of Naval Research Grant N00014-93-1-0686National Science Foundation FellowshipMaryland Procurement Office Contract MDA904-93-C-4180U.S. Navy - Office of Naval Research Grant N00014-91-J-162
    • …
    corecore