1,711 research outputs found

    Computing with Tangles

    Full text link
    Tangles of graphs have been introduced by Robertson and Seymour in the context of their graph minor theory. Tangles may be viewed as describing "k-connected components" of a graph (though in a twisted way). They play an important role in graph minor theory. An interesting aspect of tangles is that they cannot only be defined for graphs, but more generally for arbitrary connectivity functions (that is, integer-valued submodular and symmetric set functions). However, tangles are difficult to deal with algorithmically. To start with, it is unclear how to represent them, because they are families of separations and as such may be exponentially large. Our first contribution is a data structure for representing and accessing all tangles of a graph up to some fixed order. Using this data structure, we can prove an algorithmic version of a very general structure theorem due to Carmesin, Diestel, Harman and Hundertmark (for graphs) and Hundertmark (for arbitrary connectivity functions) that yields a canonical tree decomposition whose parts correspond to the maximal tangles. (This may be viewed as a generalisation of the decomposition of a graph into its 3-connected components.

    Quantum Network Models and Classical Localization Problems

    Full text link
    A review is given of quantum network models in class C which, on a suitable 2d lattice, describe the spin quantum Hall plateau transition. On a general class of graphs, however, many observables of such models can be mapped to those of a classical walk in a random environment, thus relating questions of quantum and classical localization. In many cases it is possible to make rigorous statements about the latter through the relation to associated percolation problems, in both two and three dimensions.Comment: 23 pages. To appear in '50 years of Anderson Localization', E Abrahams, ed. (World Scientific)

    A note on circular chromatic number of graphs with large girth and similar problems

    Full text link
    In this short note, we extend the result of Galluccio, Goddyn, and Hell, which states that graphs of large girth excluding a minor are nearly bipartite. We also prove a similar result for the oriented chromatic number, from which follows in particular that graphs of large girth excluding a minor have oriented chromatic number at most 55, and for the ppth chromatic number χp\chi_p, from which follows in particular that graphs GG of large girth excluding a minor have χp(G)≤p+2\chi_p(G)\leq p+2

    Generation and Properties of Snarks

    Full text link
    For many of the unsolved problems concerning cycles and matchings in graphs it is known that it is sufficient to prove them for \emph{snarks}, the class of nontrivial 3-regular graphs which cannot be 3-edge coloured. In the first part of this paper we present a new algorithm for generating all non-isomorphic snarks of a given order. Our implementation of the new algorithm is 14 times faster than previous programs for generating snarks, and 29 times faster for generating weak snarks. Using this program we have generated all non-isomorphic snarks on n≤36n\leq 36 vertices. Previously lists up to n=28n=28 vertices have been published. In the second part of the paper we analyze the sets of generated snarks with respect to a number of properties and conjectures. We find that some of the strongest versions of the cycle double cover conjecture hold for all snarks of these orders, as does Jaeger's Petersen colouring conjecture, which in turn implies that Fulkerson's conjecture has no small counterexamples. In contrast to these positive results we also find counterexamples to eight previously published conjectures concerning cycle coverings and the general cycle structure of cubic graphs.Comment: Submitted for publication V2: various corrections V3: Figures updated and typos corrected. This version differs from the published one in that the Arxiv-version has data about the automorphisms of snarks; Journal of Combinatorial Theory. Series B. 201
    • …
    corecore