1,905 research outputs found

    Optimal network topologies: Expanders, Cages, Ramanujan graphs, Entangled networks and all that

    Full text link
    We report on some recent developments in the search for optimal network topologies. First we review some basic concepts on spectral graph theory, including adjacency and Laplacian matrices, and paying special attention to the topological implications of having large spectral gaps. We also introduce related concepts as ``expanders'', Ramanujan, and Cage graphs. Afterwards, we discuss two different dynamical feautures of networks: synchronizability and flow of random walkers and so that they are optimized if the corresponding Laplacian matrix have a large spectral gap. From this, we show, by developing a numerical optimization algorithm that maximum synchronizability and fast random walk spreading are obtained for a particular type of extremely homogeneous regular networks, with long loops and poor modular structure, that we call entangled networks. These turn out to be related to Ramanujan and Cage graphs. We argue also that these graphs are very good finite-size approximations to Bethe lattices, and provide almost or almost optimal solutions to many other problems as, for instance, searchability in the presence of congestion or performance of neural networks. Finally, we study how these results are modified when studying dynamical processes controlled by a normalized (weighted and directed) dynamics; much more heterogeneous graphs are optimal in this case. Finally, a critical discussion of the limitations and possible extensions of this work is presented.Comment: 17 pages. 11 figures. Small corrections and a new reference. Accepted for pub. in JSTA

    Entangled networks, synchronization, and optimal network topology

    Full text link
    A new family of graphs, {\it entangled networks}, with optimal properties in many respects, is introduced. By definition, their topology is such that optimizes synchronizability for many dynamical processes. These networks are shown to have an extremely homogeneous structure: degree, node-distance, betweenness, and loop distributions are all very narrow. Also, they are characterized by a very interwoven (entangled) structure with short average distances, large loops, and no well-defined community-structure. This family of nets exhibits an excellent performance with respect to other flow properties such as robustness against errors and attacks, minimal first-passage time of random walks, efficient communication, etc. These remarkable features convert entangled networks in a useful concept, optimal or almost-optimal in many senses, and with plenty of potential applications computer science or neuroscience.Comment: Slightly modified version, as accepted in Phys. Rev. Let

    Group Testing with Random Pools: optimal two-stage algorithms

    Full text link
    We study Probabilistic Group Testing of a set of N items each of which is defective with probability p. We focus on the double limit of small defect probability, p>1, taking either p->0 after NN\to\infty or p=1/Nβp=1/N^{\beta} with β(0,1/2)\beta\in(0,1/2). In both settings the optimal number of tests which are required to identify with certainty the defectives via a two-stage procedure, Tˉ(N,p)\bar T(N,p), is known to scale as NplogpNp|\log p|. Here we determine the sharp asymptotic value of Tˉ(N,p)/(Nplogp)\bar T(N,p)/(Np|\log p|) and construct a class of two-stage algorithms over which this optimal value is attained. This is done by choosing a proper bipartite regular graph (of tests and variable nodes) for the first stage of the detection. Furthermore we prove that this optimal value is also attained on average over a random bipartite graph where all variables have the same degree, while the tests have Poisson-distributed degrees. Finally, we improve the existing upper and lower bound for the optimal number of tests in the case p=1/Nβp=1/N^{\beta} with β[1/2,1)\beta\in[1/2,1).Comment: 12 page

    Bounds for identifying codes in terms of degree parameters

    Full text link
    An identifying code is a subset of vertices of a graph such that each vertex is uniquely determined by its neighbourhood within the identifying code. If \M(G) denotes the minimum size of an identifying code of a graph GG, it was conjectured by F. Foucaud, R. Klasing, A. Kosowski and A. Raspaud that there exists a constant cc such that if a connected graph GG with nn vertices and maximum degree dd admits an identifying code, then \M(G)\leq n-\tfrac{n}{d}+c. We use probabilistic tools to show that for any d3d\geq 3, \M(G)\leq n-\tfrac{n}{\Theta(d)} holds for a large class of graphs containing, among others, all regular graphs and all graphs of bounded clique number. This settles the conjecture (up to constants) for these classes of graphs. In the general case, we prove \M(G)\leq n-\tfrac{n}{\Theta(d^{3})}. In a second part, we prove that in any graph GG of minimum degree δ\delta and girth at least 5, \M(G)\leq(1+o_\delta(1))\tfrac{3\log\delta}{2\delta}n. Using the former result, we give sharp estimates for the size of the minimum identifying code of random dd-regular graphs, which is about logddn\tfrac{\log d}{d}n

    Topological Resonances in Scattering on Networks (Graphs)

    Full text link
    We report on a hitherto unnoticed type of resonances occurring in scattering from networks (quantum graphs) which are due to the complex connectivity of the graph - its topology. We consider generic open graphs and show that any cycle leads to narrow resonances which do not fit in any of the prominent paradigms for narrow resonances (classical barriers, localization due to disorder, chaotic scattering). We call these resonances `topological' to emphasize their origin in the non-trivial connectivity. Topological resonances have a clear and unique signature which is apparent in the statistics of the resonance parameters (such as e.g., the width, the delay time or the wave-function intensity in the graph). We discuss this phenomenon by providing analytical arguments supported by numerical simulation, and identify the features of the above distributions which depend on genuine topological quantities such as the length of the shortest cycle (girth). These signatures cannot be explained using any of the other paradigms for narrow resonances. Finally, we propose an experimental setting where the topological resonances could be demonstrated, and study the stability of the relevant distribution functions to moderate dissipation

    Cooperative Local Repair in Distributed Storage

    Full text link
    Erasure-correcting codes, that support local repair of codeword symbols, have attracted substantial attention recently for their application in distributed storage systems. This paper investigates a generalization of the usual locally repairable codes. In particular, this paper studies a class of codes with the following property: any small set of codeword symbols can be reconstructed (repaired) from a small number of other symbols. This is referred to as cooperative local repair. The main contribution of this paper is bounds on the trade-off of the minimum distance and the dimension of such codes, as well as explicit constructions of families of codes that enable cooperative local repair. Some other results regarding cooperative local repair are also presented, including an analysis for the well-known Hadamard/Simplex codes.Comment: Fixed some minor issues in Theorem 1, EURASIP Journal on Advances in Signal Processing, December 201
    corecore