2,718 research outputs found

    Bounds on the Complexity of Halfspace Intersections when the Bounded Faces have Small Dimension

    Full text link
    We study the combinatorial complexity of D-dimensional polyhedra defined as the intersection of n halfspaces, with the property that the highest dimension of any bounded face is much smaller than D. We show that, if d is the maximum dimension of a bounded face, then the number of vertices of the polyhedron is O(n^d) and the total number of bounded faces of the polyhedron is O(n^d^2). For inputs in general position the number of bounded faces is O(n^d). For any fixed d, we show how to compute the set of all vertices, how to determine the maximum dimension of a bounded face of the polyhedron, and how to compute the set of bounded faces in polynomial time, by solving a polynomial number of linear programs

    Colourful Simplicial Depth

    Full text link
    Inspired by Barany's colourful Caratheodory theorem, we introduce a colourful generalization of Liu's simplicial depth. We prove a parity property and conjecture that the minimum colourful simplicial depth of any core point in any d-dimensional configuration is d^2+1 and that the maximum is d^(d+1)+1. We exhibit configurations attaining each of these depths and apply our results to the problem of bounding monochrome (non-colourful) simplicial depth.Comment: 18 pages, 5 figues. Minor polishin

    Quasi-period collapse and GL_n(Z)-scissors congruence in rational polytopes

    Full text link
    Quasi-period collapse occurs when the Ehrhart quasi-polynomial of a rational polytope has a quasi-period less than the denominator of that polytope. This phenomenon is poorly understood, and all known cases in which it occurs have been proven with ad hoc methods. In this note, we present a conjectural explanation for quasi-period collapse in rational polytopes. We show that this explanation applies to some previous cases appearing in the literature. We also exhibit examples of Ehrhart polynomials of rational polytopes that are not the Ehrhart polynomials of any integral polytope. Our approach depends on the invariance of the Ehrhart quasi-polynomial under the action of affine unimodular transformations. Motivated by the similarity of this idea to the scissors congruence problem, we explore the development of a Dehn-like invariant for rational polytopes in the lattice setting.Comment: 8 pages, 3 figures, to appear in the proceedings of Integer points in polyhedra, June 11 -- June 15, 2006, Snowbird, U

    Topological Data Analysis with Bregman Divergences

    Get PDF
    Given a finite set in a metric space, the topological analysis generalizes hierarchical clustering using a 1-parameter family of homology groups to quantify connectivity in all dimensions. The connectivity is compactly described by the persistence diagram. One limitation of the current framework is the reliance on metric distances, whereas in many practical applications objects are compared by non-metric dissimilarity measures. Examples are the Kullback-Leibler divergence, which is commonly used for comparing text and images, and the Itakura-Saito divergence, popular for speech and sound. These are two members of the broad family of dissimilarities called Bregman divergences. We show that the framework of topological data analysis can be extended to general Bregman divergences, widening the scope of possible applications. In particular, we prove that appropriately generalized Cech and Delaunay (alpha) complexes capture the correct homotopy type, namely that of the corresponding union of Bregman balls. Consequently, their filtrations give the correct persistence diagram, namely the one generated by the uniformly growing Bregman balls. Moreover, we show that unlike the metric setting, the filtration of Vietoris-Rips complexes may fail to approximate the persistence diagram. We propose algorithms to compute the thus generalized Cech, Vietoris-Rips and Delaunay complexes and experimentally test their efficiency. Lastly, we explain their surprisingly good performance by making a connection with discrete Morse theory

    Asymptotically efficient triangulations of the d-cube

    Full text link
    Let PP and QQ be polytopes, the first of "low" dimension and the second of "high" dimension. We show how to triangulate the product P×QP \times Q efficiently (i.e., with few simplices) starting with a given triangulation of QQ. Our method has a computational part, where we need to compute an efficient triangulation of P×ΔmP \times \Delta^m, for a (small) natural number mm of our choice. Δm\Delta^m denotes the mm-simplex. Our procedure can be applied to obtain (asymptotically) efficient triangulations of the cube InI^n: We decompose In=Ik×In−kI^n = I^k \times I^{n-k}, for a small kk. Then we recursively assume we have obtained an efficient triangulation of the second factor and use our method to triangulate the product. The outcome is that using k=3k=3 and m=2m=2, we can triangulate InI^n with O(0.816nn!)O(0.816^{n} n!) simplices, instead of the O(0.840nn!)O(0.840^{n} n!) achievable before.Comment: 19 pages, 6 figures. Only minor changes from previous versions, some suggested by anonymous referees. Paper accepted in "Discrete and Computational Geometry
    • …
    corecore