8,048 research outputs found

    On estimation of entropy and mutual information of continuous distributions

    Get PDF
    Mutual information is used in a procedure to estimate time-delays between recordings of electroencephalogram (EEG) signals originating from epileptic animals and patients. We present a simple and reliable histogram-based method to estimate mutual information. The accuracies of this mutual information estimator and of a similar entropy estimator are discussed. The bias and variance calculations presented can also be applied to discrete valued systems. Finally, we present some simulation results, which are compared with earlier work

    Pointwise Relations between Information and Estimation in Gaussian Noise

    Full text link
    Many of the classical and recent relations between information and estimation in the presence of Gaussian noise can be viewed as identities between expectations of random quantities. These include the I-MMSE relationship of Guo et al.; the relative entropy and mismatched estimation relationship of Verd\'{u}; the relationship between causal estimation and mutual information of Duncan, and its extension to the presence of feedback by Kadota et al.; the relationship between causal and non-casual estimation of Guo et al., and its mismatched version of Weissman. We dispense with the expectations and explore the nature of the pointwise relations between the respective random quantities. The pointwise relations that we find are as succinctly stated as - and give considerable insight into - the original expectation identities. As an illustration of our results, consider Duncan's 1970 discovery that the mutual information is equal to the causal MMSE in the AWGN channel, which can equivalently be expressed saying that the difference between the input-output information density and half the causal estimation error is a zero mean random variable (regardless of the distribution of the channel input). We characterize this random variable explicitly, rather than merely its expectation. Classical estimation and information theoretic quantities emerge with new and surprising roles. For example, the variance of this random variable turns out to be given by the causal MMSE (which, in turn, is equal to the mutual information by Duncan's result).Comment: 31 pages, 2 figures, submitted to IEEE Transactions on Information Theor

    Optimal model-free prediction from multivariate time series

    Get PDF
    Forecasting a time series from multivariate predictors constitutes a challenging problem, especially using model-free approaches. Most techniques, such as nearest-neighbor prediction, quickly suffer from the curse of dimensionality and overfitting for more than a few predictors which has limited their application mostly to the univariate case. Therefore, selection strategies are needed that harness the available information as efficiently as possible. Since often the right combination of predictors matters, ideally all subsets of possible predictors should be tested for their predictive power, but the exponentially growing number of combinations makes such an approach computationally prohibitive. Here a prediction scheme that overcomes this strong limitation is introduced utilizing a causal pre-selection step which drastically reduces the number of possible predictors to the most predictive set of causal drivers making a globally optimal search scheme tractable. The information-theoretic optimality is derived and practical selection criteria are discussed. As demonstrated for multivariate nonlinear stochastic delay processes, the optimal scheme can even be less computationally expensive than commonly used sub-optimal schemes like forward selection. The method suggests a general framework to apply the optimal model-free approach to select variables and subsequently fit a model to further improve a prediction or learn statistical dependencies. The performance of this framework is illustrated on a climatological index of El Ni\~no Southern Oscillation.Comment: 14 pages, 9 figure

    Maximum Entropy Vector Kernels for MIMO system identification

    Full text link
    Recent contributions have framed linear system identification as a nonparametric regularized inverse problem. Relying on â„“2\ell_2-type regularization which accounts for the stability and smoothness of the impulse response to be estimated, these approaches have been shown to be competitive w.r.t classical parametric methods. In this paper, adopting Maximum Entropy arguments, we derive a new â„“2\ell_2 penalty deriving from a vector-valued kernel; to do so we exploit the structure of the Hankel matrix, thus controlling at the same time complexity, measured by the McMillan degree, stability and smoothness of the identified models. As a special case we recover the nuclear norm penalty on the squared block Hankel matrix. In contrast with previous literature on reweighted nuclear norm penalties, our kernel is described by a small number of hyper-parameters, which are iteratively updated through marginal likelihood maximization; constraining the structure of the kernel acts as a (hyper)regularizer which helps controlling the effective degrees of freedom of our estimator. To optimize the marginal likelihood we adapt a Scaled Gradient Projection (SGP) algorithm which is proved to be significantly computationally cheaper than other first and second order off-the-shelf optimization methods. The paper also contains an extensive comparison with many state-of-the-art methods on several Monte-Carlo studies, which confirms the effectiveness of our procedure
    • …
    corecore