7,462 research outputs found

    Combinatorics and geometry of finite and infinite squaregraphs

    Full text link
    Squaregraphs were originally defined as finite plane graphs in which all inner faces are quadrilaterals (i.e., 4-cycles) and all inner vertices (i.e., the vertices not incident with the outer face) have degrees larger than three. The planar dual of a finite squaregraph is determined by a triangle-free chord diagram of the unit disk, which could alternatively be viewed as a triangle-free line arrangement in the hyperbolic plane. This representation carries over to infinite plane graphs with finite vertex degrees in which the balls are finite squaregraphs. Algebraically, finite squaregraphs are median graphs for which the duals are finite circular split systems. Hence squaregraphs are at the crosspoint of two dualities, an algebraic and a geometric one, and thus lend themselves to several combinatorial interpretations and structural characterizations. With these and the 5-colorability theorem for circle graphs at hand, we prove that every squaregraph can be isometrically embedded into the Cartesian product of five trees. This embedding result can also be extended to the infinite case without reference to an embedding in the plane and without any cardinality restriction when formulated for median graphs free of cubes and further finite obstructions. Further, we exhibit a class of squaregraphs that can be embedded into the product of three trees and we characterize those squaregraphs that are embeddable into the product of just two trees. Finally, finite squaregraphs enjoy a number of algorithmic features that do not extend to arbitrary median graphs. For instance, we show that median-generating sets of finite squaregraphs can be computed in polynomial time, whereas, not unexpectedly, the corresponding problem for median graphs turns out to be NP-hard.Comment: 46 pages, 14 figure

    Polar syzygies in characteristic zero: the monomial case

    Get PDF
    Given a set of forms f={f_1,...,f_m} in R=k[x_1,...,x_n], where k is a field of characteristic zero, we focus on the first syzygy module Z of the transposed Jacobian module D(f), whose elements are called differential syzygies of f. There is a distinct submodule P of Z coming from the polynomial relations of f through its transposed Jacobian matrix, the elements of which are called polar syzygies of f. We say that f is polarizable if equality P=Z holds. This paper is concerned with the situation where f are monomials of degree 2, in which case one can naturally associate to them a graph G(f) with loops and translate the problem into a combinatorial one. A main result is a complete combinatorial characterization of polarizability in terms of special configurations in this graph. As a consequence, we show that polarizability implies normality of the subalgebra k[f] of R and that the converse holds provided the graph G(f) is free of certain degenerate configurations. One main combinatorial class of polarizability is the class of polymatroidal sets. We also prove that if the edge graph of G(f) has diameter at most 2 then f is polarizable. We establish a curious connection with birationality of rational maps defined by monomial quadrics.Comment: 33 pages, 15 figure

    Computing NodeTrix Representations of Clustered Graphs

    Full text link
    NodeTrix representations are a popular way to visualize clustered graphs; they represent clusters as adjacency matrices and inter-cluster edges as curves connecting the matrix boundaries. We study the complexity of constructing NodeTrix representations focusing on planarity testing problems, and we show several NP-completeness results and some polynomial-time algorithms. Building on such algorithms we develop a JavaScript library for NodeTrix representations aimed at reducing the crossings between edges incident to the same matrix.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Rectangular Layouts and Contact Graphs

    Get PDF
    Contact graphs of isothetic rectangles unify many concepts from applications including VLSI and architectural design, computational geometry, and GIS. Minimizing the area of their corresponding {\em rectangular layouts} is a key problem. We study the area-optimization problem and show that it is NP-hard to find a minimum-area rectangular layout of a given contact graph. We present O(n)-time algorithms that construct O(n2)O(n^2)-area rectangular layouts for general contact graphs and O(nlogn)O(n\log n)-area rectangular layouts for trees. (For trees, this is an O(logn)O(\log n)-approximation algorithm.) We also present an infinite family of graphs (rsp., trees) that require Ω(n2)\Omega(n^2) (rsp., Ω(nlogn)\Omega(n\log n)) area. We derive these results by presenting a new characterization of graphs that admit rectangular layouts using the related concept of {\em rectangular duals}. A corollary to our results relates the class of graphs that admit rectangular layouts to {\em rectangle of influence drawings}.Comment: 28 pages, 13 figures, 55 references, 1 appendi
    corecore