10,557 research outputs found

    Energy-Efficient Flow Scheduling and Routing with Hard Deadlines in Data Center Networks

    Full text link
    The power consumption of enormous network devices in data centers has emerged as a big concern to data center operators. Despite many traffic-engineering-based solutions, very little attention has been paid on performance-guaranteed energy saving schemes. In this paper, we propose a novel energy-saving model for data center networks by scheduling and routing "deadline-constrained flows" where the transmission of every flow has to be accomplished before a rigorous deadline, being the most critical requirement in production data center networks. Based on speed scaling and power-down energy saving strategies for network devices, we aim to explore the most energy efficient way of scheduling and routing flows on the network, as well as determining the transmission speed for every flow. We consider two general versions of the problem. For the version of only flow scheduling where routes of flows are pre-given, we show that it can be solved polynomially and we develop an optimal combinatorial algorithm for it. For the version of joint flow scheduling and routing, we prove that it is strongly NP-hard and cannot have a Fully Polynomial-Time Approximation Scheme (FPTAS) unless P=NP. Based on a relaxation and randomized rounding technique, we provide an efficient approximation algorithm which can guarantee a provable performance ratio with respect to a polynomial of the total number of flows.Comment: 11 pages, accepted by ICDCS'1

    Energy-Efficient Transmission Schedule for Delay-Limited Bursty Data Arrivals under Non-Ideal Circuit Power Consumption

    Full text link
    This paper develops a novel approach to obtaining energy-efficient transmission schedules for delay-limited bursty data arrivals under non-ideal circuit power consumption. Assuming a-prior knowledge of packet arrivals, deadlines and channel realizations, we show that the problem can be formulated as a convex program. For both time-invariant and time-varying fading channels, it is revealed that the optimal transmission between any two consecutive channel or data state changing instants, termed epoch, can only take one of the three strategies: (i) no transmission, (ii) transmission with an energy-efficiency (EE) maximizing rate over part of the epoch, or (iii) transmission with a rate greater than the EE-maximizing rate over the whole epoch. Based on this specific structure, efficient algorithms are then developed to find the optimal policies that minimize the total energy consumption with a low computational complexity. The proposed approach can provide the optimal benchmarks for practical schemes designed for transmissions of delay-limited data arrivals, and can be employed to develop efficient online scheduling schemes which require only causal knowledge of data arrivals and deadline requirements.Comment: 30 pages, 7 figure
    • …
    corecore