3,116 research outputs found

    The Impact of QoS Constraints on the Energy Efficiency of Fixed-Rate Wireless Transmissions

    Get PDF
    Transmission over wireless fading channels under quality of service (QoS) constraints is studied when only the receiver has channel side information. Being unaware of the channel conditions, transmitter is assumed to send the information at a fixed rate. Under these assumptions, a two-state (ON-OFF) transmission model is adopted, where information is transmitted reliably at a fixed rate in the ON state while no reliable transmission occurs in the OFF state. QoS limitations are imposed as constraints on buffer violation probabilities, and effective capacity formulation is used to identify the maximum throughput that a wireless channel can sustain while satisfying statistical QoS constraints. Energy efficiency is investigated by obtaining the bit energy required at zero spectral efficiency and the wideband slope in both wideband and low-power regimes assuming that the receiver has perfect channel side information (CSI). In both wideband and low-power regimes, the increased energy requirements due to the presence of QoS constraints are quantified. Comparisons with variable-rate/fixed-power and variable-rate/variable-power cases are given. Energy efficiency is further analyzed in the presence of channel uncertainties. The optimal fraction of power allocated to training is identified under QoS constraints. It is proven that the minimum bit energy in the low-power regime is attained at a certain nonzero power level below which bit energy increases without bound with vanishing power

    Optimal Save-Then-Transmit Protocol for Energy Harvesting Wireless Transmitters

    Full text link
    In this paper, the design of a wireless communication device relying exclusively on energy harvesting is considered. Due to the inability of rechargeable energy sources to charge and discharge at the same time, a constraint we term the energy half-duplex constraint, two rechargeable energy storage devices (ESDs) are assumed so that at any given time, there is always one ESD being recharged. The energy harvesting rate is assumed to be a random variable that is constant over the time interval of interest. A save-then-transmit (ST) protocol is introduced, in which a fraction of time {\rho} (dubbed the save-ratio) is devoted exclusively to energy harvesting, with the remaining fraction 1 - {\rho} used for data transmission. The ratio of the energy obtainable from an ESD to the energy harvested is termed the energy storage efficiency, {\eta}. We address the practical case of the secondary ESD being a battery with {\eta} < 1, and the main ESD being a super-capacitor with {\eta} = 1. The optimal save-ratio that minimizes outage probability is derived, from which some useful design guidelines are drawn. In addition, we compare the outage performance of random power supply to that of constant power supply over the Rayleigh fading channel. The diversity order with random power is shown to be the same as that of constant power, but the performance gap can be large. Furthermore, we extend the proposed ST protocol to wireless networks with multiple transmitters. It is shown that the system-level outage performance is critically dependent on the relationship between the number of transmitters and the optimal save-ratio for single-channel outage minimization. Numerical results are provided to validate our proposed study.Comment: This is the longer version of a paper to appear in IEEE Transactions on Wireless Communication

    Minimum Energy to Send kk Bits Over Multiple-Antenna Fading Channels

    Full text link
    This paper investigates the minimum energy required to transmit kk information bits with a given reliability over a multiple-antenna Rayleigh block-fading channel, with and without channel state information (CSI) at the receiver. No feedback is assumed. It is well known that the ratio between the minimum energy per bit and the noise level converges to 1.59-1.59 dB as kk goes to infinity, regardless of whether CSI is available at the receiver or not. This paper shows that lack of CSI at the receiver causes a slowdown in the speed of convergence to 1.59-1.59 dB as kk\to\infty compared to the case of perfect receiver CSI. Specifically, we show that, in the no-CSI case, the gap to 1.59-1.59 dB is proportional to ((logk)/k)1/3((\log k) /k)^{1/3}, whereas when perfect CSI is available at the receiver, this gap is proportional to 1/k1/\sqrt{k}. In both cases, the gap to 1.59-1.59 dB is independent of the number of transmit antennas and of the channel's coherence time. Numerically, we observe that, when the receiver is equipped with a single antenna, to achieve an energy per bit of 1.5 - 1.5 dB in the no-CSI case, one needs to transmit at least 7×1077\times 10^7 information bits, whereas 6×1046\times 10^4 bits suffice for the case of perfect CSI at the receiver

    Beta-Beta Bounds: Finite-Blocklength Analog of the Golden Formula

    Get PDF
    It is well known that the mutual information between two random variables can be expressed as the difference of two relative entropies that depend on an auxiliary distribution, a relation sometimes referred to as the golden formula. This paper is concerned with a finite-blocklength extension of this relation. This extension consists of two elements: 1) a finite-blocklength channel-coding converse bound by Polyanskiy and Verd\'{u} (2014), which involves the ratio of two Neyman-Pearson β\beta functions (beta-beta converse bound); and 2) a novel beta-beta channel-coding achievability bound, expressed again as the ratio of two Neyman-Pearson β\beta functions. To demonstrate the usefulness of this finite-blocklength extension of the golden formula, the beta-beta achievability and converse bounds are used to obtain a finite-blocklength extension of Verd\'{u}'s (2002) wideband-slope approximation. The proof parallels the derivation of the latter, with the beta-beta bounds used in place of the golden formula. The beta-beta (achievability) bound is also shown to be useful in cases where the capacity-achieving output distribution is not a product distribution due to, e.g., a cost constraint or structural constraints on the codebook, such as orthogonality or constant composition. As an example, the bound is used to characterize the channel dispersion of the additive exponential-noise channel and to obtain a finite-blocklength achievability bound (the tightest to date) for multiple-input multiple-output Rayleigh-fading channels with perfect channel state information at the receiver.Comment: to appear in IEEE Transactions on Information Theor

    Media-Based MIMO: A New Frontier in Wireless Communications

    Full text link
    The idea of Media-based Modulation (MBM), is based on embedding information in the variations of the transmission media (channel state). This is in contrast to legacy wireless systems where data is embedded in a Radio Frequency (RF) source prior to the transmit antenna. MBM offers several advantages vs. legacy systems, including "additivity of information over multiple receive antennas", and "inherent diversity over a static fading channel". MBM is particularly suitable for transmitting high data rates using a single transmit and multiple receive antennas (Single Input-Multiple Output Media-Based Modulation, or SIMO-MBM). However, complexity issues limit the amount of data that can be embedded in the channel state using a single transmit unit. To address this shortcoming, the current article introduces the idea of Layered Multiple Input-Multiple Output Media-Based Modulation (LMIMO-MBM). Relying on a layered structure, LMIMO-MBM can significantly reduce both hardware and algorithmic complexities, as well as the training overhead, vs. SIMO-MBM. Simulation results show excellent performance in terms of Symbol Error Rate (SER) vs. Signal-to-Noise Ratio (SNR). For example, a 4×164\times 16 LMIMO-MBM is capable of transmitting 3232 bits of information per (complex) channel-use, with SER 105 \simeq 10^{-5} at Eb/N03.5E_b/N_0\simeq -3.5dB (or SER 104 \simeq 10^{-4} at Eb/N0=4.5E_b/N_0=-4.5dB). This performance is achieved using a single transmission and without adding any redundancy for Forward-Error-Correction (FEC). This means, in addition to its excellent SER vs. energy/rate performance, MBM relaxes the need for complex FEC structures, and thereby minimizes the transmission delay. Overall, LMIMO-MBM provides a promising alternative to MIMO and Massive MIMO for the realization of 5G wireless networks.Comment: 26 pages, 11 figures, additional examples are given to further explain the idea of Media-Based Modulation. Capacity figure adde

    Low-Latency Short-Packet Transmissions: Fixed Length or HARQ?

    Get PDF
    We study short-packet communications, subject to latency and reliability constraints, under the premises of limited frequency diversity and no time diversity. The question addressed is whether, and when, hybrid automatic repeat request (HARQ) outperforms fixed-blocklength schemes with no feedback (FBL-NF) in such a setting. We derive an achievability bound for HARQ, under the assumption of a limited number of transmissions. The bound relies on pilot-assisted transmission to estimate the fading channel and scaled nearest-neighbor decoding at the receiver. We compare our achievability bound for HARQ to stateof-the-art achievability bounds for FBL-NF communications and show that for a given latency, reliability, number of information bits, and number of diversity branches, HARQ may significantly outperform FBL-NF. For example, for an average latency of 1 ms, a target error probability of 10^-3, 30 information bits, and 3 diversity branches, the gain in energy per bit is about 4 dB.Comment: 6 pages, 5 figures, accepted to GLOBECOM 201

    Adaptive Demodulation in Differentially Coherent Phase Systems: Design and Performance Analysis

    Full text link
    Adaptive Demodulation (ADM) is a newly proposed rate-adaptive system which operates without requiring Channel State Information (CSI) at the transmitter (unlike adaptive modulation) by using adaptive decision region boundaries at the receiver and encoding the data with a rateless code. This paper addresses the design and performance of an ADM scheme for two common differentially coherent schemes: M-DPSK (M-ary Differential Phase Shift Keying) and M-DAPSK (M-ary Differential Amplitude and Phase Shift Keying) operating over AWGN and Rayleigh fading channels. The optimal method for determining the most reliable bits for a given differential detection scheme is presented. In addition, simple (near-optimal) implementations are provided for recovering the most reliable bits from a received pair of differentially encoded symbols for systems using 16-DPSK and 16- DAPSK. The new receivers offer the advantages of a rate-adaptive system, without requiring CSI at the transmitter and a coherent phase reference at the receiver. Bit error analysis for the ADM system in both cases is presented along with numerical results of the spectral efficiency for the rate-adaptive systems operating over a Rayleigh fading channel.Comment: 25 pages, 11 Figures, submitted to IEEE Transactions on Communications, June 1, 201
    corecore