826 research outputs found

    Lifetime Improvement in Wireless Sensor Networks via Collaborative Beamforming and Cooperative Transmission

    Full text link
    Collaborative beamforming (CB) and cooperative transmission (CT) have recently emerged as communication techniques that can make effective use of collaborative/cooperative nodes to create a virtual multiple-input/multiple-output (MIMO) system. Extending the lifetime of networks composed of battery-operated nodes is a key issue in the design and operation of wireless sensor networks. This paper considers the effects on network lifetime of allowing closely located nodes to use CB/CT to reduce the load or even to avoid packet-forwarding requests to nodes that have critical battery life. First, the effectiveness of CB/CT in improving the signal strength at a faraway destination using energy in nearby nodes is studied. Then, the performance improvement obtained by this technique is analyzed for a special 2D disk case. Further, for general networks in which information-generation rates are fixed, a new routing problem is formulated as a linear programming problem, while for other general networks, the cost for routing is dynamically adjusted according to the amount of energy remaining and the effectiveness of CB/CT. From the analysis and the simulation results, it is seen that the proposed method can reduce the payloads of energy-depleting nodes by about 90% in the special case network considered and improve the lifetimes of general networks by about 10%, compared with existing techniques.Comment: Invited paper to appear in the IEE Proceedings: Microwaves, Antennas and Propagation, Special Issue on Antenna Systems and Propagation for Future Wireless Communication

    Design and analysis of routing protocol for cognitive radio ad hoc networks in Heterogeneous Environment

    Get PDF
    Multi-hop routing protocol in cognitive radio mobile ad hoc networks (CRMANETs) is a critical issue. Furthermore, the routing metric used in multi-hop CRMANETs should reflect the bands availability, the links quality, the PU activities and quality of service (QoS) requirements of SUs. For the best of our knowledge, many of researchers investigated the performance of the different routing protocols in a homogeneous environment only. In this paper, we propose a heterogeneous cognitive radio routing protocol (HCR) operates in heterogeneous environment (i.e. the route from source to destination utilize the licensed and unlicensed spectrum bands). The proposed routing protocol is carefully developed to make a tradeoff between the channel diversity of the routing path along with the CRMANETs throughput. Using simulations, we discuss the performance of the proposed HCR routing protocol and compare it with the AODV routing protocol using a discrete-event simulation which we developed using JAVA platform

    Energy-Efficient Data Management in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) are deployed widely for various applications. A variety of useful data are generated by these deployments. Since WSNs have limited resources and unreliable communication links, traditional data management techniques are not suitable. Therefore, designing effective data management techniques for WSNs becomes important. In this dissertation, we address three key issues of data management in WSNs. For data collection, a scheme of making some nodes sleep and estimating their values according to the other active nodes’ readings has been proved energy-efficient. For the purpose of improving the precision of estimation, we propose two powerful estimation models, Data Estimation using a Physical Model (DEPM) and Data Estimation using a Statistical Model (DESM). Most of existing data processing approaches of WSNs are real-time. However, historical data of WSNs are also significant for various applications. No previous study has specifically addressed distributed historical data query processing. We propose an Index based Historical Data Query Processing scheme which stores historical data locally and processes queries energy-efficiently by using a distributed index tree. Area query processing is significant for various applications of WSNs. No previous study has specifically addressed this issue. We propose an energy-efficient in-network area query processing scheme. In our scheme, we use an intelligent method (Grid lists) to describe an area, thus reducing the communication cost and dropping useless data as early as possible. With a thorough simulation study, it is shown that our schemes are effective and energy- efficient. Based on the area query processing algorithm, an Intelligent Monitoring System is designed to detect various events and provide real-time and accurate information for escaping, rescuing, and evacuation when a dangerous event happened
    • …
    corecore