2 research outputs found

    Trees and graph packing

    Get PDF
    In this thesis we investigate two main topics, namely, suffix trees and graph packing problems. In Chapter 2, we present the suffix trees. The main result of this chapter is a lower bound on the size of simple suffix trees. In the rest of the thesis we deal with packing problems. In Chapter 3 we give almost tight conditions on a bipartite packing problem. In Chapter 4 we consider an embedding problem regarding degree sequences. In Chapter 5 we show the existence of bounded degree bipartite graphs with a small separator and large bandwidth and we prove that under certain conditions these graphs can be embedded into graphs with minimum degree slightly over n/2

    Clockwork / Linear Dilaton: Structure and Phenomenology

    Full text link
    The linear dilaton geometry in five dimensions, rediscovered recently in the continuum limit of the clockwork model, may offer a solution to the hierarchy problem which is qualitatively different from other extra-dimensional scenarios and leads to distinctive signatures at the LHC. We discuss the structure of the theory, in particular aspects of naturalness and UV completion, and then explore its phenomenology, suggesting novel strategies for experimental searches. In particular, we propose to analyze the diphoton and dilepton invariant mass spectra in Fourier space in order to identify an approximately periodic structure of resonant peaks. Among other signals, we highlight displaced decays from resonantly-produced long-lived states and high-multiplicity final states from cascade decays of excited gravitons.Comment: 39 pages + appendices, 27 figures; v2: minor improvements; published versio
    corecore