1,601 research outputs found

    AG Codes from Polyhedral Divisors

    Get PDF
    A description of complete normal varieties with lower dimensional torus action has been given by Altmann, Hausen, and Suess, generalizing the theory of toric varieties. Considering the case where the acting torus T has codimension one, we describe T-invariant Weil and Cartier divisors and provide formulae for calculating global sections, intersection numbers, and Euler characteristics. As an application, we use divisors on these so-called T-varieties to define new evaluation codes called T-codes. We find estimates on their minimum distance using intersection theory. This generalizes the theory of toric codes and combines it with AG codes on curves. As the simplest application of our general techniques we look at codes on ruled surfaces coming from decomposable vector bundles. Already this construction gives codes that are better than the related product code. Further examples show that we can improve these codes by constructing more sophisticated T-varieties. These results suggest to look further for good codes on T-varieties.Comment: 30 pages, 9 figures; v2: replaced fansy cycles with fansy divisor

    Toric surface codes and Minkowski sums

    Get PDF
    Toric codes are evaluation codes obtained from an integral convex polytope PRnP \subset \R^n and finite field \F_q. They are, in a sense, a natural extension of Reed-Solomon codes, and have been studied recently by J. Hansen and D. Joyner. In this paper, we obtain upper and lower bounds on the minimum distance of a toric code constructed from a polygon PR2P \subset \R^2 by examining Minkowski sum decompositions of subpolygons of PP. Our results give a simple and unifying explanation of bounds of Hansen and empirical results of Joyner; they also apply to previously unknown cases.Comment: 15 pages, 7 figures; This version contains some minor editorial revisions -- to appear SIAM Journal on Discrete Mathematic

    Complete intersection vanishing ideals on degenerate tori over finite fields

    Full text link
    We study the complete intersection property and the algebraic invariants (index of regularity, degree) of vanishing ideals on degenerate tori over finite fields. We establish a correspondence between vanishing ideals and toric ideals associated to numerical semigroups. This correspondence is shown to preserve the complete intersection property, and allows us to use some available algorithms to determine whether a given vanishing ideal is a complete intersection. We give formulae for the degree, and for the index of regularity of a complete intersection in terms of the Frobenius number and the generators of a numerical semigroup.Comment: Arabian Journal of Mathematics, to appea

    Algebraic methods for parameterized codes and invariants of vanishing ideals over finite fields

    Get PDF
    Let K be a finite field with q elements and let X be a subset of a projective space P^{s-1}, over the field K, which is parameterized by Laurent monomials. Let I(X) be the vanishing ideal of X. Some of the main contributions of this paper are in determining the structure of I(X) and some of their invariants. It is shown that I(X) is a lattice ideal. We introduce the notion of a parameterized code arising from X and present algebraic methods to compute and study its dimension, length and minimum distance. For a parameterized code arising from a connected graph we are able to compute its length and to make our results more precise. If the graph is non-bipartite, we show an upper bound for the minimum distance. We also study the underlying geometric structure of X.Comment: Finite Fields Appl., to appea

    Complete intersections in binomial and lattice ideals

    Full text link
    For the family of graded lattice ideals of dimension 1, we establish a complete intersection criterion in algebraic and geometric terms. In positive characteristic, it is shown that all ideals of this family are binomial set theoretic complete intersections. In characteristic zero, we show that an arbitrary lattice ideal which is a binomial set theoretic complete intersection is a complete intersection.Comment: Internat. J. Algebra Comput., to appea
    corecore