30,007 research outputs found

    Minimum cycle and homology bases of surface embedded graphs

    Get PDF
    We study the problems of finding a minimum cycle basis (a minimum weight set of cycles that form a basis for the cycle space) and a minimum homology basis (a minimum weight set of cycles that generates the 11-dimensional (Z2\mathbb{Z}_2)-homology classes) of an undirected graph embedded on a surface. The problems are closely related, because the minimum cycle basis of a graph contains its minimum homology basis, and the minimum homology basis of the 11-skeleton of any graph is exactly its minimum cycle basis. For the minimum cycle basis problem, we give a deterministic O(nω+22gn2+m)O(n^\omega+2^{2g}n^2+m)-time algorithm for graphs embedded on an orientable surface of genus gg. The best known existing algorithms for surface embedded graphs are those for general graphs: an O(mω)O(m^\omega) time Monte Carlo algorithm and a deterministic O(nm2/logn+n2m)O(nm^2/\log n + n^2 m) time algorithm. For the minimum homology basis problem, we give a deterministic O((g+b)3nlogn+m)O((g+b)^3 n \log n + m)-time algorithm for graphs embedded on an orientable or non-orientable surface of genus gg with bb boundary components, assuming shortest paths are unique, improving on existing algorithms for many values of gg and nn. The assumption of unique shortest paths can be avoided with high probability using randomization or deterministically by increasing the running time of the homology basis algorithm by a factor of O(logn)O(\log n).Comment: A preliminary version of this work was presented at the 32nd Annual International Symposium on Computational Geometr

    Minimum Cycle Base of Graphs Identified by Two Planar Graphs

    Get PDF
    In this paper, we study the minimum cycle base of the planar graphs obtained from two 2-connected planar graphs by identifying an edge (or a cycle) of one graph with the corresponding edge (or cycle) of another, related with map geometries, i.e., Smarandache 2-dimensional manifolds

    A Constructive Characterisation of Circuits in the Simple (2,2)-sparsity Matroid

    Get PDF
    We provide a constructive characterisation of circuits in the simple (2,2)-sparsity matroid. A circuit is a simple graph G=(V,E) with |E|=2|V|-1 and the number of edges induced by any XVX \subsetneq V is at most 2|X|-2. Insisting on simplicity results in the Henneberg operation being enough only when the graph is sufficiently connected. Thus we introduce 3 different join operations to complete the characterisation. Extensions are discussed to when the sparsity matroid is connected and this is applied to the theory of frameworks on surfaces to provide a conjectured characterisation of when frameworks on an infinite circular cylinder are generically globally rigid.Comment: 22 pages, 6 figures. Changes to presentatio

    Tutte's dichromate for signed graphs

    Full text link
    We introduce the ``trivariate Tutte polynomial" of a signed graph as an invariant of signed graphs up to vertex switching that contains among its evaluations the number of proper colorings and the number of nowhere-zero flows. In this, it parallels the Tutte polynomial of a graph, which contains the chromatic polynomial and flow polynomial as specializations. The number of nowhere-zero tensions (for signed graphs they are not simply related to proper colorings as they are for graphs) is given in terms of evaluations of the trivariate Tutte polynomial at two distinct points. Interestingly, the bivariate dichromatic polynomial of a biased graph, shown by Zaslavsky to share many similar properties with the Tutte polynomial of a graph, does not in general yield the number of nowhere-zero flows of a signed graph. Therefore the ``dichromate" for signed graphs (our trivariate Tutte polynomial) differs from the dichromatic polynomial (the rank-size generating function). The trivariate Tutte polynomial of a signed graph can be extended to an invariant of ordered pairs of matroids on a common ground set -- for a signed graph, the cycle matroid of its underlying graph and its frame matroid form the relevant pair of matroids. This invariant is the canonically defined Tutte polynomial of matroid pairs on a common ground set in the sense of a recent paper of Krajewski, Moffatt and Tanasa, and was first studied by Welsh and Kayibi as a four-variable linking polynomial of a matroid pair on a common ground set.Comment: 53 pp. 9 figure

    Minimal length product over homology bases of manifolds

    Full text link
    Minkowski's second theorem can be stated as an inequality for nn-dimensional flat Finsler tori relating the volume and the minimal product of the lengths of closed geodesics which form a homology basis. In this paper we show how this fundamental result can be promoted to a principle holding for a larger class of Finsler manifolds. This includes manifolds for which first Betti number and dimension do no necessarily coincide, a prime example being the case of surfaces. This class of manifolds is described by a non-vanishing condition for the hyperdeterminant reduced modulo 22 of the multilinear map induced by the fundamental class of the manifold on its first Z2{\mathbb Z}_2-cohomology group using the cup product.Comment: 24 page

    Homological Error Correction: Classical and Quantum Codes

    Get PDF
    We prove several theorems characterizing the existence of homological error correction codes both classically and quantumly. Not every classical code is homological, but we find a family of classical homological codes saturating the Hamming bound. In the quantum case, we show that for non-orientable surfaces it is impossible to construct homological codes based on qudits of dimension D>2D>2, while for orientable surfaces with boundaries it is possible to construct them for arbitrary dimension DD. We give a method to obtain planar homological codes based on the construction of quantum codes on compact surfaces without boundaries. We show how the original Shor's 9-qubit code can be visualized as a homological quantum code. We study the problem of constructing quantum codes with optimal encoding rate. In the particular case of toric codes we construct an optimal family and give an explicit proof of its optimality. For homological quantum codes on surfaces of arbitrary genus we also construct a family of codes asymptotically attaining the maximum possible encoding rate. We provide the tools of homology group theory for graphs embedded on surfaces in a self-contained manner.Comment: Revtex4 fil
    corecore