418 research outputs found

    Approximating the Spectrum of a Graph

    Full text link
    The spectrum of a network or graph G=(V,E)G=(V,E) with adjacency matrix AA, consists of the eigenvalues of the normalized Laplacian L=ID1/2AD1/2L= I - D^{-1/2} A D^{-1/2}. This set of eigenvalues encapsulates many aspects of the structure of the graph, including the extent to which the graph posses community structures at multiple scales. We study the problem of approximating the spectrum λ=(λ1,,λV)\lambda = (\lambda_1,\dots,\lambda_{|V|}), 0λ1,,λV20 \le \lambda_1,\le \dots, \le \lambda_{|V|}\le 2 of GG in the regime where the graph is too large to explicitly calculate the spectrum. We present a sublinear time algorithm that, given the ability to query a random node in the graph and select a random neighbor of a given node, computes a succinct representation of an approximation λ~=(λ~1,,λ~V)\widetilde \lambda = (\widetilde \lambda_1,\dots,\widetilde \lambda_{|V|}), 0λ~1,,λ~V20 \le \widetilde \lambda_1,\le \dots, \le \widetilde \lambda_{|V|}\le 2 such that λ~λ1ϵV\|\widetilde \lambda - \lambda\|_1 \le \epsilon |V|. Our algorithm has query complexity and running time exp(O(1/ϵ))exp(O(1/\epsilon)), independent of the size of the graph, V|V|. We demonstrate the practical viability of our algorithm on 15 different real-world graphs from the Stanford Large Network Dataset Collection, including social networks, academic collaboration graphs, and road networks. For the smallest of these graphs, we are able to validate the accuracy of our algorithm by explicitly calculating the true spectrum; for the larger graphs, such a calculation is computationally prohibitive. In addition we study the implications of our algorithm to property testing in the bounded degree graph model

    Spectral Bounds for the Connectivity of Regular Graphs with Given Order

    Get PDF
    The second-largest eigenvalue and second-smallest Laplacian eigenvalue of a graph are measures of its connectivity. These eigenvalues can be used to analyze the robustness, resilience, and synchronizability of networks, and are related to connectivity attributes such as the vertex- and edge-connectivity, isoperimetric number, and characteristic path length. In this paper, we present two upper bounds for the second-largest eigenvalues of regular graphs and multigraphs of a given order which guarantee a desired vertex- or edge-connectivity. The given bounds are in terms of the order and degree of the graphs, and hold with equality for infinite families of graphs. These results answer a question of Mohar.Comment: 24 page

    Expander Graphs and Coding Theory

    Get PDF
    Expander graphs are highly connected sparse graphs which lie at the interface of many different fields of study. For example, they play important roles in prime sieves, cryptography, compressive sensing, metric embedding, and coding theory to name a few. This thesis focuses on the connections between sparse graphs and coding theory. It is a major challenge to explicitly construct sparse graphs with good expansion properties, for example Ramanujan graphs. Nevertheless, explicit constructions do exist, and in this thesis, we survey many of these constructions up to this point including a new construction which slightly improves on an earlier edge expansion bound. The edge expansion of a graph is crucial in applications, and it is well-known that computing the edge expansion of an arbitrary graph is NP-hard. We present a simple algo-rithm for approximating the edge expansion of a graph using linear programming techniques. While Andersen and Lang (2008) proved similar results, our analysis attacks the problem from a different vantage point and was discovered independently. The main contribution in the thesis is a new result in fast decoding for expander codes. Current algorithms in the literature can decode a constant fraction of errors in linear time but require that the underlying graphs have vertex expansion at least 1/2. We present a fast decoding algorithm that can decode a constant fraction of errors in linear time given any vertex expansion (even if it is much smaller than 1/2) by using a stronger local code, and the fraction of errors corrected almost doubles that of Viderman (2013)

    Spectral Sparsification via Bounded-Independence Sampling

    Get PDF
    We give a deterministic, nearly logarithmic-space algorithm for mild spectral sparsification of undirected graphs. Given a weighted, undirected graph GG on nn vertices described by a binary string of length NN, an integer klognk\leq \log n, and an error parameter ϵ>0\epsilon > 0, our algorithm runs in space O~(klog(Nwmax/wmin))\tilde{O}(k\log (N\cdot w_{\mathrm{max}}/w_{\mathrm{min}})) where wmaxw_{\mathrm{max}} and wminw_{\mathrm{min}} are the maximum and minimum edge weights in GG, and produces a weighted graph HH with O~(n1+2/k/ϵ2)\tilde{O}(n^{1+2/k}/\epsilon^2) edges that spectrally approximates GG, in the sense of Spielmen and Teng [ST04], up to an error of ϵ\epsilon. Our algorithm is based on a new bounded-independence analysis of Spielman and Srivastava's effective resistance based edge sampling algorithm [SS08] and uses results from recent work on space-bounded Laplacian solvers [MRSV17]. In particular, we demonstrate an inherent tradeoff (via upper and lower bounds) between the amount of (bounded) independence used in the edge sampling algorithm, denoted by kk above, and the resulting sparsity that can be achieved.Comment: 37 page
    corecore