727 research outputs found

    A Bayesian Network View on Acoustic Model-Based Techniques for Robust Speech Recognition

    Full text link
    This article provides a unifying Bayesian network view on various approaches for acoustic model adaptation, missing feature, and uncertainty decoding that are well-known in the literature of robust automatic speech recognition. The representatives of these classes can often be deduced from a Bayesian network that extends the conventional hidden Markov models used in speech recognition. These extensions, in turn, can in many cases be motivated from an underlying observation model that relates clean and distorted feature vectors. By converting the observation models into a Bayesian network representation, we formulate the corresponding compensation rules leading to a unified view on known derivations as well as to new formulations for certain approaches. The generic Bayesian perspective provided in this contribution thus highlights structural differences and similarities between the analyzed approaches

    Speech Synthesis Based on Hidden Markov Models

    Get PDF

    On adaptive decision rules and decision parameter adaptation for automatic speech recognition

    Get PDF
    Recent advances in automatic speech recognition are accomplished by designing a plug-in maximum a posteriori decision rule such that the forms of the acoustic and language model distributions are specified and the parameters of the assumed distributions are estimated from a collection of speech and language training corpora. Maximum-likelihood point estimation is by far the most prevailing training method. However, due to the problems of unknown speech distributions, sparse training data, high spectral and temporal variabilities in speech, and possible mismatch between training and testing conditions, a dynamic training strategy is needed. To cope with the changing speakers and speaking conditions in real operational conditions for high-performance speech recognition, such paradigms incorporate a small amount of speaker and environment specific adaptation data into the training process. Bayesian adaptive learning is an optimal way to combine prior knowledge in an existing collection of general models with a new set of condition-specific adaptation data. In this paper, the mathematical framework for Bayesian adaptation of acoustic and language model parameters is first described. Maximum a posteriori point estimation is then developed for hidden Markov models and a number of useful parameters densities commonly used in automatic speech recognition and natural language processing.published_or_final_versio

    Acoustic model adaptation for ortolan bunting (Emberiza hortulana L.) song-type classification

    Get PDF
    Automatic systems for vocalization classification often require fairly large amounts of data on which to train models. However, animal vocalization data collection and transcription is a difficult and time-consuming task, so that it is expensive to create large data sets. One natural solution to this problem is the use of acoustic adaptation methods. Such methods, common in human speech recognition systems, create initial models trained on speaker independent data, then use small amounts of adaptation data to build individual-specific models. Since, as in human speech, individual vocal variability is a significant source of variation in bioacoustic data, acoustic model adaptation is naturally suited to classification in this domain as well. To demonstrate and evaluate the effectiveness of this approach, this paper presents the application of maximum likelihood linear regression adaptation to ortolan bunting (Emberiza hortulana L.) song-type classification. Classification accuracies for the adapted system are computed as a function of the amount of adaptation data and compared to caller-independent and caller-dependent systems. The experimental results indicate that given the same amount of data, supervised adaptation significantly outperforms both caller-independent and caller-dependent systems

    Reconstruction-based speech enhancement from robust acoustic features

    Get PDF
    This paper proposes a method of speech enhancement where a clean speech signal is reconstructed from a sinusoidal model of speech production and a set of acoustic speech features. The acoustic features are estimated from noisy speech and comprise, for each frame, a voicing classification (voiced, unvoiced or non-speech), fundamental frequency (for voiced frames) and spectral envelope. Rather than using different algorithms to estimate each parameter, a single statistical model is developed. This comprises a set of acoustic models and has similarity to the acoustic modelling used in speech recognition. This allows noise and speaker adaptation to be applied to acoustic feature estimation to improve robustness. Objective and subjective tests compare reconstruction-based enhancement with other methods of enhancement and show the proposed method to be highly effective at removing noise

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    Arabic Dialectical Speech Recognition in Mobile Communication Services

    Get PDF
    corecore