90 research outputs found

    Teleportation of a qubit using entangled non-orthogonal states: A comparative study

    Full text link
    The effect of non-orthogonality of an entangled non-orthogonal state based quantum channel is investigated in detail in the context of the teleportation of a qubit. Specifically, average fidelity, minimum fidelity and minimum assured fidelity (MASFI) are obtained for teleportation of a single qubit state using all the Bell type entangled non-orthogonal states known as quasi Bell states. Using Horodecki criterion, it is shown that the teleportation scheme obtained by replacing the quantum channel (Bell state) of the usual teleportation scheme by a quasi Bell state is optimal. Further, the performance of various quasi Bell states as teleportation channel is compared in an ideal situation (i.e., in the absence of noise) and under different noise models (e.g., amplitude and phase damping channels). It is observed that the best choice of the quasi Bell state depends on the amount non-orthogonality, both in noisy and noiseless case. A specific quasi Bell state, which was found to be maximally entangled in the ideal conditions, is shown to be less efficient as a teleportation channel compared to other quasi Bell states in particular cases when subjected to noisy channels. It has also been observed that usually the value of average fidelity falls with an increase in the number of qubits exposed to noisy channels (viz., Alice's, Bob's and to be teleported qubits), but the converse may be observed in some particular cases.Comment: 14 pages, 4 figure

    Bipartite and Multipartite Entanglement of Gaussian States

    Full text link
    In this chapter we review the characterization of entanglement in Gaussian states of continuous variable systems. For two-mode Gaussian states, we discuss how their bipartite entanglement can be accurately quantified in terms of the global and local amounts of mixedness, and efficiently estimated by direct measurements of the associated purities. For multimode Gaussian states endowed with local symmetry with respect to a given bipartition, we show how the multimode block entanglement can be completely and reversibly localized onto a single pair of modes by local, unitary operations. We then analyze the distribution of entanglement among multiple parties in multimode Gaussian states. We introduce the continuous-variable tangle to quantify entanglement sharing in Gaussian states and we prove that it satisfies the Coffman-Kundu-Wootters monogamy inequality. Nevertheless, we show that pure, symmetric three-mode Gaussian states, at variance with their discrete-variable counterparts, allow a promiscuous sharing of quantum correlations, exhibiting both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. Finally, we investigate the connection between multipartite entanglement and the optimal fidelity in a continuous-variable quantum teleportation network. We show how the fidelity can be maximized in terms of the best preparation of the shared entangled resources and, viceversa, that this optimal fidelity provides a clearcut operational interpretation of several measures of bipartite and multipartite entanglement, including the entanglement of formation, the localizable entanglement, and the continuous-variable tangle.Comment: 21 pages, 4 figures, WS style. Published as Chapter 1 in the book "Quantum Information with Continuous Variables of Atoms and Light" (Imperial College Press, 2007), edited by N. Cerf, G. Leuchs, and E. Polzik. Details of the book available at http://www.icpress.co.uk/physics/p489.html . For recent follow-ups see quant-ph/070122

    Optimal conclusive teleportation of a d-dimensional unknown state

    Get PDF
    We formulate a conclusive teleportation protocol for a system in d-dimensional Hilbert space utilizing the positive operator valued measurement at the sending station. The conclusive teleportation protocol ensures some perfect teleportation events when the channel is only partially entangled, at the expense of lowering the overall average fidelity. We find the change of the fidelity as optimizing the conclusive teleportation events and discuss how much information remains in the inconclusive parts of the teleportation.Comment: 7 pages, 1 figure; figure correcte

    Probabilistic Quantum Teleportation via 3-Qubit Non-Maximally Entangled GHZ State by Repeated Generalized Measurements

    Full text link
    We propose a scheme of repeated generalized Bell state measurement (GBSM) for probabilistic quantum teleportation of single qubit state of a particle (say, 0) using 3-qubit non-maximally entangled (NME) GHZ state as a quantum channel. Alice keeps two qubits (say, 1 and 2) of the 3-qubit resource and the third qubit (say, 3) goes to Bob. Initially, Alice performs GBSM on qubits 0 and 1 which may lead to either success or failure. On obtaining success, Alice performs projective measurement on qubit 2 in the eigen basis of σx\sigma_{x}. Both these measurement outcomes are communicated to Bob classically, which helps him to perform a suitable unitary transformation on qubit 3 to recover the information state. On the other hand, if failure is obtained, the next attempt of GBSM is performed on qubits 0 and 2. This process of repeating GBSM on alternate pair of qubits may continue until perfect teleportation with unit fidelity is achieved. We have obtained analytical expressions for success probability up to three repetitions of GBSM. The success probability is shown to be a polynomial function of bipartite concurrence of the NME resource. The variation of success probability with the bipartite concurrence has been plotted which shows the convergence of success probability to unity with GBSM repetitions.Comment: 11 pages, 5figure
    corecore