18,421 research outputs found

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Adaptive relaying method selection for multi-rate wireless networks with network coding

    No full text

    Analyzing Delay in Wireless Multi-hop Heterogeneous Body Area Networks

    Full text link
    With increase in ageing population, health care market keeps growing. There is a need for monitoring of health issues. Wireless Body Area Network (WBAN) consists of wireless sensors attached on or inside human body for monitoring vital health related problems e.g, Electro Cardiogram (ECG), Electro Encephalogram (EEG), ElectronyStagmography (ENG) etc. Due to life threatening situations, timely sending of data is essential. For data to reach health care center, there must be a proper way of sending data through reliable connection and with minimum delay. In this paper transmission delay of different paths, through which data is sent from sensor to health care center over heterogeneous multi-hop wireless channel is analyzed. Data of medical related diseases is sent through three different paths. In all three paths, data from sensors first reaches ZigBee, which is the common link in all three paths. Wireless Local Area Network (WLAN), Worldwide Interoperability for Microwave Access (WiMAX), Universal Mobile Telecommunication System (UMTS) are connected with ZigBee. Each network (WLAN, WiMAX, UMTS) is setup according to environmental conditions, suitability of device and availability of structure for that device. Data from these networks is sent to IP-Cloud, which is further connected to health care center. Delay of data reaching each device is calculated and represented graphically. Main aim of this paper is to calculate delay of each link in each path over multi-hop wireless channel.Comment: arXiv admin note: substantial text overlap with arXiv:1208.240

    Control of Multiple Remote Servers for Quality-Fair Delivery of Multimedia Contents

    Full text link
    This paper proposes a control scheme for the quality-fair delivery of several encoded video streams to mobile users sharing a common wireless resource. Video quality fairness, as well as similar delivery delays are targeted among streams. The proposed controller is implemented within some aggregator located near the bottleneck of the network. The transmission rate among streams is adapted based on the quality of the already encoded and buffered packets in the aggregator. Encoding rate targets are evaluated by the aggregator and fed back to each remote video server (fully centralized solution), or directly evaluated by each server in a distributed way (partially distributed solution). Each encoding rate target is adjusted for each stream independently based on the corresponding buffer level or buffering delay in the aggregator. Communication delays between the servers and the aggregator are taken into account. The transmission and encoding rate control problems are studied with a control-theoretic perspective. The system is described with a multi-input multi-output model. Proportional Integral (PI) controllers are used to adjust the video quality and control the aggregator buffer levels. The system equilibrium and stability properties are studied. This provides guidelines for choosing the parameters of the PI controllers. Experimental results show the convergence of the proposed control system and demonstrate the improvement in video quality fairness compared to a classical transmission rate fair streaming solution and to a utility max-min fair approach

    Multi-View Video Packet Scheduling

    Full text link
    In multiview applications, multiple cameras acquire the same scene from different viewpoints and generally produce correlated video streams. This results in large amounts of highly redundant data. In order to save resources, it is critical to handle properly this correlation during encoding and transmission of the multiview data. In this work, we propose a correlation-aware packet scheduling algorithm for multi-camera networks, where information from all cameras are transmitted over a bottleneck channel to clients that reconstruct the multiview images. The scheduling algorithm relies on a new rate-distortion model that captures the importance of each view in the scene reconstruction. We propose a problem formulation for the optimization of the packet scheduling policies, which adapt to variations in the scene content. Then, we design a low complexity scheduling algorithm based on a trellis search that selects the subset of candidate packets to be transmitted towards effective multiview reconstruction at clients. Extensive simulation results confirm the gain of our scheduling algorithm when inter-source correlation information is used in the scheduler, compared to scheduling policies with no information about the correlation or non-adaptive scheduling policies. We finally show that increasing the optimization horizon in the packet scheduling algorithm improves the transmission performance, especially in scenarios where the level of correlation rapidly varies with time
    • 

    corecore