4,419 research outputs found

    3-Factor-criticality of vertex-transitive graphs

    Full text link
    A graph of order nn is pp-factor-critical, where pp is an integer of the same parity as nn, if the removal of any set of pp vertices results in a graph with a perfect matching. 1-Factor-critical graphs and 2-factor-critical graphs are factor-critical graphs and bicritical graphs, respectively. It is well known that every connected vertex-transitive graph of odd order is factor-critical and every connected non-bipartite vertex-transitive graph of even order is bicritical. In this paper, we show that a simple connected vertex-transitive graph of odd order at least 5 is 3-factor-critical if and only if it is not a cycle.Comment: 15 pages, 3 figure

    4-Factor-criticality of vertex-transitive graphs

    Full text link
    A graph of order nn is pp-factor-critical, where pp is an integer of the same parity as nn, if the removal of any set of pp vertices results in a graph with a perfect matching. 1-factor-critical graphs and 2-factor-critical graphs are well-known factor-critical graphs and bicritical graphs, respectively. It is known that if a connected vertex-transitive graph has odd order, then it is factor-critical, otherwise it is elementary bipartite or bicritical. In this paper, we show that a connected vertex-transitive non-bipartite graph of even order at least 6 is 4-factor-critical if and only if its degree is at least 5. This result implies that each connected non-bipartite Cayley graphs of even order and degree at least 5 is 2-extendable.Comment: 34 pages, 3 figure

    Extendable self-avoiding walks

    Get PDF
    The connective constant mu of a graph is the exponential growth rate of the number of n-step self-avoiding walks starting at a given vertex. A self-avoiding walk is said to be forward (respectively, backward) extendable if it may be extended forwards (respectively, backwards) to a singly infinite self-avoiding walk. It is called doubly extendable if it may be extended in both directions simultaneously to a doubly infinite self-avoiding walk. We prove that the connective constants for forward, backward, and doubly extendable self-avoiding walks, denoted respectively by mu^F, mu^B, mu^FB, exist and satisfy mu = mu^F = mu^B = mu^FB for every infinite, locally finite, strongly connected, quasi-transitive directed graph. The proofs rely on a 1967 result of Furstenberg on dimension, and involve two different arguments depending on whether or not the graph is unimodular.Comment: Accepted versio

    Maximizing the minimum and maximum forcing numbers of perfect matchings of graphs

    Full text link
    Let GG be a simple graph with 2n2n vertices and a perfect matching. The forcing number f(G,M)f(G,M) of a perfect matching MM of GG is the smallest cardinality of a subset of MM that is contained in no other perfect matching of GG. Among all perfect matchings MM of GG, the minimum and maximum values of f(G,M)f(G,M) are called the minimum and maximum forcing numbers of GG, denoted by f(G)f(G) and F(G)F(G), respectively. Then f(G)≀F(G)≀nβˆ’1f(G)\leq F(G)\leq n-1. Che and Chen (2011) proposed an open problem: how to characterize the graphs GG with f(G)=nβˆ’1f(G)=n-1. Later they showed that for bipartite graphs GG, f(G)=nβˆ’1f(G)=n-1 if and only if GG is complete bipartite graph Kn,nK_{n,n}. In this paper, we solve the problem for general graphs and obtain that f(G)=nβˆ’1f(G)=n-1 if and only if GG is a complete multipartite graph or Kn,n+K^+_{n,n} (Kn,nK_{n,n} with arbitrary additional edges in the same partite set). For a larger class of graphs GG with F(G)=nβˆ’1F(G)=n-1 we show that GG is nn-connected and a brick (3-connected and bicritical graph) except for Kn,n+K^+_{n,n}. In particular, we prove that the forcing spectrum of each such graph GG is continued by matching 2-switches and the minimum forcing numbers of all such graphs GG form an integer interval from ⌊n2βŒ‹\lfloor\frac{n}{2}\rfloor to nβˆ’1n-1
    • …
    corecore